Preview

Ateroscleroz

Advanced search

Contrast-enhanced mri imaging of atherosclerotic lesions of the aortic wall

Abstract

   Aim of the study. To analyze MR tomographic imaging features of atherosclerotic lesions of the aorta, with a paramagnetic contrast enhancement, in patients with extensive atherosclerosis and old acute myocardial infarction (AMI).

   Material and methods. The patients population comprised 33 patients with multiple atherosclerosis and old transmural AMI of the left ventricle. As control group eight patients with tumor pathology of the thorax were employed, without evidence of clinically significant atherosclerosis of the same age range. All patients underwent contrast-enhanced study (paramagnetic in standard dose of 0.1 mmol / kg BW) and index of enhancement (IE) of T1-weighted images was calculated as the ratio of intensities over the aortic wall on contrast and initial MRI studies. Geometric diameter and wall thickness of the aorta at the level of accumulation of contrast-paramagnetic material were also determined.
   Results and discussion. In 25 (76 %) patients with extensive atherosclerosis and old AMI IE of the atherosclerotic lesions in the aortic wall in all cases was over 1.14 (mean 1.17 ± 0.13), far more than increasing of intensity in the control group. In eight patients (24 %) the lack of accumulation of contrast-paramagnetic material in the aortic wall was noted. Types of accumulation of contrast paramagnetic was assigned as a local or diffuse accumulation syndrome, depending on the length and circularity of the lesions. A local syndrome of accumulation was found in 15 patients, with IE = = 1.09 ± 0.06, aortic diameter and wall thickness at the level of accumulation of contrast equal to 2.66 ± 0.35 cm and 0.5 ± 0.13 cm, respectively. Diffuse type of accumulation was found in 10 patients in this case IE = 1.26 ± 0.13 aortic diameter and the wall thickness at the accumulation of contrast are 2.4 ± 0.34 cm and 0.53 ± 0.11 cm, respectively. In the control group no significant accumulation of contrast paramagnetic material in the aortic wall was observed, IE did not exceed 1.04 (mean 1.01 ± 0.02).

   Conclusion. Contrast-enhanced MRI allows to visually and quantitatively assess pathology of aortic wall in atherosclerosis.

About the Authors

A. S. Maksimova
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



V. E. Babokin
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



I. L. Bukhovets
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



E. E. Bobrikova
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



Yu. V. Rogovskaya
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



P. I. Lukyanenok
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



V. Yu. Usov
RAMS
Russian Federation

SB RAMS

Research Insitute of Cardiology

634012

Kievskaya str., 111-a

Tomsk



References

1. Libby P., Di Carli M., Weissleder R. The vascular biology of atherosclerosis and imaging targets // J. Nucl. Med. 2010. Vol. 51. P. 33S–37S.

2. Корж А. Н. Атеротромбоз: современные представления о патогенетических концепциях и терапевтических мишенях / А. Н. Корж // Укр. кардiол. журн. – 2004. – № 2. – С. 110–115.

3. Абрамова Н. Н. Магнитно-резонансная томография и магнитно-резонансная ангиография в визуализации сосудистых структур / Н. Н. Абрамова, О. И. Беличенко // Вестн. рентгенологии и радиологии. – 1997. – № 2. – С. 50–54.

4. Стражздень Е. Ю. Магнитно-резонансная томография сонных артерий в оценке структуры каротидных атеросклеротических бляшек / Е. Ю. Стражздень, М. А. Шария // Вестн. рентгенологии и радиологии. – 2011. – № 4. – С. 52–57.

5. Winter P. M., Morawski A. M., Caruthers Sh. D. et al. Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis with αvβ3 – Integrin–Targeted Nanoparticles // Circulation. 2003. Vol. 108. P. 2270–2274.

6. Khurana R., Simons M., Martin J. F. et al. Role of Angio genesis in Cardiovascular Disease // Circulation. 2005. Vol. 112. P. 1813–1824.

7. Шевченко А. О. Неоангиогенез и коронарный атеросклероз: диагностическое значение нового биохимического маркера – плацентарного фактора роста PlGF – y больных ишемической болезнью сердца / А. О. Шевченко [и др.] // Кардиология. – 2006. – № 11. – С. 9–15.

8. Finn A. V., Jain R. K. Coronary Plaque Neovascularization and Hemorrhage // JACC Cardiovasc. Imaging. 2010. Vol. 3. P. 41–44.

9. Koester W. Endarteritis and arteritis // Berl. Klin. Wochenschr. 1876. Vol. 13. P. 454–455.

10. Халатов С. С. Учение о диатезе и местных отложениях продуктов обмена / С. С. Халатов. – М.; Л.: Госиздат, 1930. – 456 c.

11. Халатов С. С. Холестериновая болезнь в ее патофизиологическом и клиническом значении / С. С. Халатов. – М.: Медгиз, 1946. – 126 с.

12. Barger A. C., Beeuwkes R. 3rd, Lainey L. L., Silverman K. J. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis // N. Engl. J. Med. 1984. Vol. 310. P. 175–177.

13. O’Brien K. D., McDonald T. O., Chait A. et al. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content // Circulation. 1996. Vol. 93 (4). P. 672–682.

14. Kaartinen M., Penttilä A., Kovanen P. T. Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage // Atherosclerosis. 1996. Vol. 123 (1-2). P. 123–131.

15. Иртюга О. Б. Активность матриксных металлопротеиназ у больных с аневризмой восходящего отдела аорты различной этиологии / О. Б. Иртюга [и др.] // Артериальная гипертензия. – 2010. – Т. 16, № 6. – С. 587–591.

16. Raffetto J. D., Khalil R. A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease // Biochem. Pharmacol. 2008. Vol. 75 (2). P. 346–359.

17. Winter P. M., Morawski A. M., Caruthers S. D. et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles // Circulation. 2003. Vol. 108. P. 2270–2274.

18. Cai K., Caruthers S. D., Huang W. et al. MR molecular imaging of aortic angiogenesis // JACC Cardiovasc. Imaging. 2010. Vol. 2, N 8. P. 824–832.

19. Бобрикова Е. Э. Контрастирование коронарных атеросклеротических поражений при МРТ-исследовании сердца / Е. Э. Бобрикова // Мед. визуализация. – 2013. – № 3. – С. 21–29.

20. Бобрикова Е. Э. Оценка состояния атеросклеротических бляшек брахиоцефальных артерий средствами высокоразрешающей контрастированной МРТ: взаимосвязь с ишемическим повреждением головного мозга / Е. Э. Бобрикова [и др.] // Мед. визуализация. – 2013. – № 1. – С. 26–34.


Review

For citations:


Maksimova A.S., Babokin V.E., Bukhovets I.L., Bobrikova E.E., Rogovskaya Yu.V., Lukyanenok P.I., Usov V.Yu. Contrast-enhanced mri imaging of atherosclerotic lesions of the aortic wall. Ateroscleroz. 2014;10(3):13-19. (In Russ.)

Views: 201


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)