Preview

Ateroscleroz

Advanced search

ASSOCIATION OF POLYMORPHISM IN PCSK9 GENE WITH LIPID PR OFILE IN RUSSIAN POPULATION

Abstract

Background and aims: mutations in LDLR, APOB, PCSK9 genes determine the development of autosomal dominant forms of familial hypercholesterolemia. The PCSK9 gene encodes an enzyme involved in the metabolism of low density lipoprotein (LDL) by post-transcriptional regulation of the LDL receptors. Purpose: to perform analysis of PCSK9 rs562556, rs11591147 in Russian population and the population sub-samples of persons with hyper- and hypocholesterolemia; to investigate the PCSK9 protein association with rs562556, rs11591147 the PCSK9 gene at the population level. Materials and methods: genotyping rs562556 in the PCSK9 was carried out in a population and in the subgroup with hypercholesterolemia; genotyping rs11591147 was carried out in a population and in the subgroups with normal and low level of total cholesterol. Subgroups were included in the analyses in the HAPIEE project framework (9360 participants, 45-69 years old, 50% men). Blood lipid levels were determined using standard enzymatic assays. Genotyping of the PCSK9 rs11591147 was performed using PCR-RFLP and then confirmed by direct sequencing. Genotyping of the PCSK9 rs562556 was performed by RT-PCR using sets of "Syntol" (Russia). Results:Analysis of rs562556 association with lipid profile and PCSK9 protein blood levels showed these polymorphisms do not significantly contribute to forming hypercholesterolemia in Caucasian populations of Western Siberia."Loss of function" mutation R46L (PCSK9 rs11591147) association with total cholesterol levels in the group with normal and low levels of total cholesterol was revealed. Conclusion: The PCSK9 rs562556, rs11591147 alleles and genotypes frequency in the population and in the population subgroups with hyper- and hypocholesterolemia were determinedfor the first time in Russia. The Caucasian population of West Siberia does not significantly differ from populations of Europe by alleles and genotypes frequencies.A statistically significant association of the rare T allele of rs11591147 with low total cholesterol was determined.

About the Authors

K. S. Astrakova
Federal State Budgetary of Scientific Institution "Institution of Internal and Preventive Medicine"
Russian Federation


E. V. Shakhtshneider
Federal State Budgetary of Scientific Institution "Institution of Internal and Preventive Medicine"
Russian Federation


D. E. Ivanoshchuk
Federal State Budgetary of Scientific Institution "Institution of Internal and Preventive Medicine"
Russian Federation


P. S. Orlov
Federal State Budgetary of Scientific Institution "Institution of Internal and Preventive Medicine"
Russian Federation


Yu. I. Ragino
Federal State Budgetary of Scientific Institution "Institution of Internal and Preventive Medicine"
Russian Federation


M. I. Voevoda
Federal State Budgetary of Scientific Institution "Institution of Internal and Preventive Medicine"
Russian Federation


References

1. Libby P. Inflammation in atherosclerosis. Nature, 2002, 420(6917):868-874.

2. Roger V.L., Go A.S., Lloyd-Jones D.M. et al. Heart Disease and Stroke Statistics - 2011 Update: a report from the American Heart Association. // Circulation, 2011; 123: e18-e209.

3. Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolaemia: a HuGE prevalence review. Am J Epidemiol 2004;160:407-20.

4. Humphries S.E., Whittall R.A., Hubbart C.S., Maplebeck S. et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J MedGenet. 2006; 43 (12):943-949.

5. Marduel M., Carri A., Sassolas A., Devillers M., Carreau V., Di Filippo M.,Erlich D., Abifadel M., Marques-Pinheiro A., Munnich A., Junien C., The French ADH Research Network, Boileau C., Varret M. and Rab s J.P. Molecular Spectrum of Autosomal Dominant Hypercholesterolemia in France. HUMAN MUTATION Mutation in Brief 31: E1811-E1824 (2010) Online.

6. Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem. 2009; 284(42):28856- 28864.

7. В. В. Кухарчук, С. С. Бажан Пропротеин конвертаза субтилизин/кексин типа 9 (PCSK9) - ре-гулятор экспрессии рецепторов липопротеинов низкой плотности. Атеросклероз и Дислипидемии 2013 №2 (11), стр. 19-26. (V. V. Kukharchuk, S. S. Bajan Proprotein convertase subtilisin/keksin type 9 (PCSK9) - control the expression of low density lipoprotein receptor. The Journal of Atherosclerosis and Dyslipidemias 2013 №2 (11), p. 19-27).

8. Abifadel, M., Varret, M., Rabes, J.-P., Allard, D., Ouguerram, K., Devillers, M., Cruaud, C., Benjannet, S., Wickham, L., Erlich, D., Derre, A., Villeger, L., and 14 others. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genet. 34: 154-156, 2003.

9. Abifadel M., Rabes J.P., Devillers M. at al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 2009; 30:520-529.

10. R. Schulz, K.-D. Schluter, U. Laufs Molecular and cellular function of the proprotein convertase subtilisin/ kexin type 9 (PCSK9). Basic Res Cardiol 2015; 110:4.

11. Kotowski I. K., Pertsemlidis A., Luke A., Cooper R. S., Vega G. L., Cohen J. C., Hobbs H. H. 2006. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78: 410-422

12. Parnell LD, Lee YC, Lai CQ. Adaptive genetic variation and heart disease risk. Curr Opin Lipidol. 2010 Apr;21(2):116-22.

13. Shioji K, Mannami T, Kokubo Y, Inamoto N, Takagi S, Goto Y, et al. Genetic variants in PCSK9 affect the cholesterol level in Japanese. J Hum Genet 2004;49(2):109-114.

14. Humphries SE, Neely RDG, Whittall RA, Troutt JS, Konrad RJ, Scartezini M, et al. Healthy individuals carrying the PCSK9 p.R46L variant and familial hypercholesterolemia patients carrying PCSK9 p.D374Y exhibit lower plasma concentrations of PCSK9. Clin Chem. 2009;55:2153-61.

15. Seidah N.G. The Proprotein Convertases, 20 Years Later. M. Mbikay, N.G. Seidah (eds.), Proprotein Convertases Chapter 3, Methods in Molecular Biology 768, 2011: 23-57.

16. M. Abifadel, S. Elbitar, P. El Khoury, Y. Ghaleb, M. Chémaly, M-L. Moussalli, J-P. Rabès, M. Varret, C. Boileau Living the PCSK9 Adventure: from the Identification of a New Gene in Familial Hypercholesterolemia Towards a Potential New Class of Anticholesterol Drugs. CurrAtheroscler Rep (2014) 16:439.

17. Postmus I, Trompet S, de Craen AJ, Buckley BM, Ford I, Stott DJ, Sattar N, Slagboom PE, Westendorp RG, Jukema JW. PCSK9 SNP rs11591147 is associated with low cholesterol levels but not with cognitive performance or noncardiovascular clinical events in an elderly population. J Lipid Res. 2013 Feb;54(2):561-6.


Review

For citations:


Astrakova K.S., Shakhtshneider E.V., Ivanoshchuk D.E., Orlov P.S., Ragino Yu.I., Voevoda M.I. ASSOCIATION OF POLYMORPHISM IN PCSK9 GENE WITH LIPID PR OFILE IN RUSSIAN POPULATION. Ateroscleroz. 2016;12(2):18-24. (In Russ.)

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)