Preview

Ateroscleroz

Advanced search

The role of adipokines in the development of cardiometabolic disorders in humans

https://doi.org/10.52727/2078-256X-2022-18-4-388-394

Abstract

The review presents the results of studies of possible mechanisms through which the effect of adipokines on the cardiovascular system is realized. Such adipokines and cytokines as adiponectin, leptin, resistin, adipsin, interleukin 6, tumor necrosis factor α are analyzed. Data are given on the pathogenetic and clinical features of the production of these biologically active substances and their effect on metabolism. Thematic sources from PubMed and RSCI databases are analyzed.

About the Authors

V. I. Alferova
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Vlada I. Alferova, MD, postgraduate student

eLibrary SPIN: 1129-0599

 



S. V. Mustafina
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Svetlana V. Mustafina, doctor of medical sciences

eLibrary SPIN: 8395-1395



References

1. Alferova V.I., Mustafina S.V. The prevalence of obesity in the adult population of the Russian Federation (literature review). Obesity and Metabolism, 2022; 19 (1): 96– 105. (In Russ.)]. doi: 10.14341/omet12809

2. Mustafina S.V., Malyutina S.K., Rymar O.D. et al. The epidemiology of obesity and the development of disorders of glucose metabolism according to a prospective study in Siberia. Obesity and Metabolism, 2015; 12 (4): 24–28. (In Russ.)]. doi: 10.14341/OMET2015424-28

3. Romantsova T.I., Ostrovskaya E.V. Metabolically healthy obesity: definitions, protective factors, clinical relevance. Almanac of Clinical Medicine, 2015; 1 (1): 75–86. (In Russ.)]. doi: 10.18786/2072-0505-2015-1-75-86

4. Phillips C.M. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann. N. Y. Acad. Sci., 2017; 1391 (1): 85–100. doi: 10.1111/nyas.13230

5. Spiridonov A.N., Khudiakova A.D., Ragino Yu.I. Adipokines/cytokines and disturbances in lipid metabolism. Ateroscleroz, 2022; 18 (2): 157–164. (In Russ.)]. doi: 10.52727/2078-256X-2022-18-2-157-164

6. Ryabova E.A., Ragino Yu.I. Proinflammatory adipokines and cytokines in abdominal obesity as a factor in the development of atherosclerosis and renal pathology. Ateroscleroz, 2021; 17 (4): 101–110. (In Russ.)]. doi: 10.52727/2078-256X-2021-17-4-101-110

7. Khoramipour K., Chamari K., Hekmatikar A.A. et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients, 2021; 13 (4): 1180. doi: 10.3390/nu13041180

8. Francisco V., Pino J., Gonzalez-Gay M.A. et al. Adipokines and inflammation: is it a question of weight? British J. Pharmacol., 2018; 175: 1569–1579. doi: 10.1111/bph.14181

9. Tanyanskiy D.A., Denisenko A.D. The influence of adiponectin on carbohydrates, lipids, and lipoproteins metabolism: analysis of signaling mechanisms. Obesity and Metabolism, 2021; 18 (2): 103–111]. doi: 10.14341/omet12754

10. Fu Y., Luo N., Klein R.L., Garvey W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid. Res., 2005; 46 (7): 1369–1379. doi: 10.1194/jlr.M400373-JLR200

11. Ritchie I.R., Dyck D.J. Rapid loss of adiponectinstimulated fatty acid oxidation in skeletal muscle of rats fed a high fat diet is not due to altered muscle redox state. PLoS One, 2012; 7 (12): e52193. doi: 10.1371/journal.pone.0052193

12. Jung T.W., Choi H.Y., Lee S.Y. et al. Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK-FOXO1α pathway. PLoS One, 2013; 8 (6): e66529. doi: 10.1371/journal.pone.0066529

13. Kosygina A.V. Adipotsitokiny v nauchnoy i klinicheskoy praktike. Obesity and Metabolism, 2011; 8 (1): 32–39. (In Russ.)]. doi: 10.14341/20718713-5189

14. Farr O.M., Gavrieli A., Mantzoros C.S. Leptin applications in 2015: what have we learned about leptin and obesity? Curr. Opin. Endocrinol. Diabetes Obes., 2015; 22 (5): 353–359. doi: 10.1097/MED.0000000000000184

15. Zhao S., Kusminski C.M., Elmquist J.K. et al. Leptin: less is more. Diabetes, 2020; 69 (5): 823–829. doi: 10.2337/dbi19-0018

16. Banks W.A. Role of the blood-brain barrier in the evolution of feeding and cognition. Ann. N. Y. Acad. Sci., 2012; 1264 (1): 13–19. doi: 10.1111/j.1749-6632.2012.06568.x

17. Jung C.H., Kim M.S. Molecular mechanisms of central leptin resistance in obesity. Arch. Pharm. Res., 2013; 36 (2): 201–207. doi: 10.1007/s12272-013-0020-y

18. Krasilnikova E.I., Blagosklonnaya Ya.B., Bystrova A.A. Adiposopathy as a key factor in the development of insulin resistance. Arterialnaya gipertenziya, 2012; 18 (2): 164–176. (In Russ.)].

19. Baral A., Park P.H. Leptin induces apoptotic and pyroptotic cell death via NLRP3 inflammasome activation in rat hepatocytes. Int. J. Mol. Sci., 2021; 22 (22): 12589. doi: 10.3390/ijms222212589

20. Macchi C., Greco M.F., Botta M. et al. Leptin, resistin, and proprotein convertase subtilisin/kexin type 9: the role of STAT3. Am. J. Pathol., 2020; 19 (11): 2226–2236. doi: 10.1016/j.ajpath.2020.07.016

21. Verbovoy A.F., Tsanava I.A., Verbovaya N.I., Galkin R.A. Resistin – a marker of cardiovascular diseases. Obesity and Metabolism, 2017; 14 (4): 5–9. (In Russ.)]. doi: 10.14341/omet201745-9

22. Tafere G.G., Wondafrash D.Z., Zewdie K.A. et al. Plasma adipsin as a biomarker and its implication in type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes., 2020; 13: 1855–1861. doi: 10.2147/DMSO.S253967

23. Shvarts V. Adipose tissue as an endocrine organ. Problems of Endocrinology, 2009; 55 (1): 38–43. (In Russ.)]. doi: 10.14341/probl200955138-43

24. Lo J.C., Ljubicic S., Leibiger B. et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell, 2014; 158 (1): 41–53. doi:10.1016/j.cell.2014.06.005

25. Baas T. Adipsin meets β cells. Sci. Bus. Exch., 2014; 7 (30): 883–886. doi: 10.1038/scibx.2014.883

26. Guo D., Liu J., Zhang P. et al. Adiposity measurements and metabolic syndrome are linked through circulating neuregulin 4 and adipsin levels in obese adults. Front. Physiol., 2021; 12: 667330. doi: 10.3389/fphys.2021.667330

27. Klimontov V.V., Bulumbaeva D.M., Bgatova N.P. et al. Serum adipokine concentrations in patients with type 2 diabetes: the relationships with distribution, hypertrophy and vascularization of subcutaneous adipose tissue. Diabetes Mellitus, 2019; 22 (4): 336–347. (In Russ.)]. https://doi.org/10.14341/DM10129

28. Kang S., Narazaki M., Metwally H. et al. Historical overview of the interleukin-6 family cytokine. J. Exp. Med., 2020; 217 (5): e20190347. doi: 10.1084/jem.20190347

29. Kristóf E., Klusóczki Á., Veress R. et al. Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp. Cell Res., 2019; 377 (1-2): 47–55. doi: 10.1016/j.yexcr.2019.02.015

30. Schönknecht Y.B., Crommen S., Stoffel-Wagner B. et al. Influence of a proinflammatory state on postprandial outcomes in elderly subjects with a risk phenotype for cardiometabolic diseases. Eur. J. Nutr., 2022; 61 (6): 3077–3083. doi: 10.1007/s00394-02202870-7

31. Wedell-Neergaard A.S., Lang Lehrskov L., Christensen R.H. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab.; 2019; 29 (4): 844–855. doi: 10.1016/j.cmet.2018.12.007

32. Aggarwal B.B., Gupta S.C., Kim J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood, 2012; 119 (3): 651–665. doi: 10.1182/blood-2011-04-325225

33. Akash M.S.H., Rehman K., Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J. Cell Biochem., 2018; 119 (1): 105–110. doi: 10.1002/jcb.26174

34. Indulekha K., Surendar J., Mohan V. High sensitivity C-reactive protein, tumor necrosis factor-α, interleukin-6, and vascular cell adhesion molecule-1 levels in Asian Indians with metabolic syndrome and insulin resistance (CURES-105). J. Diabetes Sci. Technol., 2011; 5 (4): 982–988. doi: 10.1177/193229681100500421

35. Srikanthan K., Feyh A., Visweshwar H. et al. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the west virginian population. Int. J. Med. Sci., 2016; 13 (1): 25–38. doi: 10.7150/ijms.13800

36. Tanyanskiy D.A., Firova E.M., Shatilina L.V., Denisenko A.D. Role of adipokines and nonesterified fatty acids in the development of insulin resistance. Problems of Endocrinology, 2009; 55 (3): 13–16. (In Russ.)]. doi: 10.14341/probl200955313-16

37. Titov V.N. Leptin and adiponectin in the pathogenesis of the metabolic syndrome. Clinical Medicine, 2014; 92 (4): 20–29. (In Russ.)].

38. Markova T.N., Mishchenko N.K., Petina D.V. Adipocytokines: modern definition, classification and physiological role. Problems of Endocrinology, 2022; 68 (1): 73–80. (In Russ.)]. doi: 10.14341/probl12805

39. Belousova O.N., Sirotina S.S., Yakunchenko T.I., Zhernakova N.I. Molecular and genetic mechanisms of the pathogenesis of type 2 diabetes. Nauch. statements of the Belgorod state. university Series: Medicine. Pharmacy, 2015; 31 (16): 213. (In Russ.)].

40. Vavilova T.P., Pleten A.P., Mikheev R.K. Biological role of adipokines as markers of pathological conditions. Nutrition Issues, 2017; 86 (2): 5–13].


Review

For citations:


Alferova V.I., Mustafina S.V. The role of adipokines in the development of cardiometabolic disorders in humans. Ateroscleroz. 2022;18(4):388-394. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-4-388-394

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)