Preview

Ateroscleroz

Advanced search

Fatty acids of erythrocyte membranes as biomarkers of non-alcoholic fatty liver disease in men

https://doi.org/10.52727/2078-256X-2022-18-4-362-380

Abstract

The aim of the study was to identify fatty acids of erythrocyte membranes that are significant for distinguishing patients with non-alcoholic fatty liver disease from healthy men, to study their indices and to establish associations of fatty acid levels with clinical and biochemical parameters. 30 men (48.7 ± 3.4 years) with non-alcoholic fatty liver disease (NAFLD) were examined according to ultrasound of the abdominal cavity, confirmed by the NLFS index, the degree of liver fibrosis established by indirect elastometry did not exceed 1 degree. As a comparison group – 28 conditionally healthy men (47.3 ± 2.7 years). The levels of fatty acids of erythrocyte membranes were studied using GC/MS systems based on three quadrupoles. A higher content of a number of saturated (lauric, margarine, pentadecanoic), monounsaturated fatty acids (palmitoleic, oleic, elaidic, the total level of monounsaturated), linoleic acid, the ratio of omega-6 to omega-3 polyunsaturated fatty acids was found in patients with non-alcoholic fatty liver disease compared with those for the control group. On the contrary, the levels of two saturated fatty acids – arachinic acid, stearic acid, omega-3 polyunsaturated fatty acid – docosahexaenoic acid, the total content of sum eicosapentaenoic acid and docosahexaenoic acid, the total level of all omega-3 polyunsaturated fatty acids and the ratio of saturated and unsaturated fatty acids were lower in patients with NAFLD than in healthy men (p=0.004-0.05). Analysis of fatty acid indices reflecting their metabolism revealed an increase in the activity of elongase (protein ELOVL6) – C18:0/C16:0 (p < 0.001), de novo lipogenesis index – C16:0/C18:2n-6 (p = 0.03) and a decrease in the activity of stearoyl-CoA desaturase 1 (C16:1;7/C16:0 (p = 0.004); C18:1;c9/C18:0 (p < 0.0001)), delta-5-desaturase (C20:4n-6/C20:3n-6) (p = 0.022) for patients with NAFLD compared with the control group. The use of individual fatty acid levels as markers to distinguish patients with NAFLD from healthy individuals showed high diagnostic accuracy – for palmitoleic acid area under the curve (AUC) 0.877, sensitivity 87 %, specificity 83 %; for arachinic acid AUC 0.825, sensitivity 84 %, specificity 78 %; for the total content of monounsaturated FA AUC 0.821, sensitivity 81 %, specificity 78 %. The use of the “panel” of fatty acids (С16:1;9, total MUFA, С20:0, n6/n3 PUFA, С18:0) provided an increase in sensitivity (91 %) and specificity (95 %) (AUC 0.915). The multidirectional associations of the levels of fatty acids of erythrocyte membranes with the manifestations of metabolic syndrome, indicators of liver tests were revealed.

About the Authors

M. V. Kruchinina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Medical University
Russian Federation

Margarita V. Kruchinina, doctor of medical sciences, associate professor, leading researcher, head of laboratory of gastroenterology; professor of the Department of Propaedeutics of Internal Diseases 

175/1, Boris Bogatkov str., Novosibirsk, 630089

52, Krasny Prospekt, Novosibirsk, 630091



M. V. Parulikova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina V. Parulikova

175/1, Boris Bogatkov str., Novosibirsk, 630089



N. E. Pershina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Natalia E. Pershina

175/1, Boris Bogatkov str., Novosibirsk, 630089



E. V. Kruchinina
Novosibirsk State Medical University
Russian Federation

Elina V. Kruchinina

52, Krasny Prospekt, Novosibirsk, 630091



References

1. Sanyal A.J. NASH: A global health problem. Hepatol. Res., 2011; 41 (7): 670–674. doi: 10.1111/j.1872-034X.2011.00824.x

2. Ahmed A., Wong R.J., Harrison S.A. Nonalcoholic Fatty Liver Disease Review: Diagnosis, Treatment, and Outcomes. Clin. Gastroenterol. Hepatol., 2015; 13 (12): 2062–2070. doi: 10.1016/j.cgh.2015.07.029

3. Lazebnik L.B., Golovanova E.V., Turkina S.V., Raikhelson K.L., Okovity S.V., Drapkina O.M., Mayev I.V., Martynov A.I., Roitberg G.E., Khlynova O.V., Abdulganieva D.I., Alekseenko S.A., Ardatskaya M.D., Bakulin I.G., Bakulina N.V., Bueverov A.O., Vinitskaya E.V., Volynets G.V., Eremina E.Yu., Grinevich V.B., Dolgushina A.I., Kazyulin A.N., Kashkina E.I., Kozlova I.V., Konev Yu.V., Korochanskaya N.V., Kravchuk Yu.A., Li E.D., Loranskaya I.D., Makhov V.M., Mekhtiev S.N., Novikova V.P., Ostroumova O.D., Pavlov Ch.S., Radchenko V.G., Samsonov A.A., Sarsenbayeva A.S., Sayfutdinov R.G., Seliverstov P.V., Sitkin S.I., Stefanyuk O.V., Tarasova L.V., Tkachenko E.I., Uspensky Yu.P., Fominykh Yu.A., Khavkin A.I., Tsyganova Yu.V., Sharkhun O.O. Non-alcoholic fatty liver disease in adults: clinic, diagnosis, treatment. Recommendations for therapists, the third version. Exp. and Clin. Gastroenterol., 2021; 185 (1): 4–52. doi: 10.31146/1682-8658-ecg-185-1-4-52 (In Russ.)].

4. Drapkina O., Evsyutina Y., Ivashkin V. Prevalence of Non-alcoholic Fatty Liver Disease in the Russian Federation: the Open, Multicenter, Prospective Study, DIREG 1. Am. J. Clin. Med. Res., 2015; 3 (2): 31–36. doi: 10.12691/ajcmr-3-2-3

5. Ivashkin V.T., Drapkina O.M., Mayev I.V., Trukhmanov A.S., Blinov D.V., Palgova L.K., Tsukanov V.V., Ushakova T.I. Prevalence of non-alcoholic fatty liver disease in patients of outpatient practice in the Russian Federation: results of the study DIREG 2. Rus. J. Gastroenterolю, Hepatol., Coloproctol., 2015; 6: 31–41. (In Russ.)].

6. Niederseer D., Wernly S., Bachmayer S., Wernly B., Bakula A., Huber-Schönauer U., Semmler G., Schmied C., Aigner E., Datz C. Diagnosis of non-alcoholic fatty liver disease (NAFLD) is independently associated with cardiovascular risk in a large austrian screening cohort. J. Clin. Med., 2020; 9: 1065–1067. doi.org/10.3390/jcm9041065

7. Weinstein G., Zelber-Sagi S., Preis S.R., Beiser A.S., DeCarli Ch., Speliotes E.K., Satizabal C.L., Vasan R.S., Seshadri S. Association of nonalcoholic fatty liver disease with lower brain volume in healthy middle-aged adults in the framingham study. JAMA Neurol., 2017; 75 (1): 97–104. doi: 10.1001/jamaneurol.2017.3229

8. Mishina E.E., Mayorov A.Yu., Bogomolov P.O., Matsievich M.V., Kokina K.Yu., Bogolyubova A.V. Nonalcoholic fatty liver disease: cause or consequence of insulin resistance? Diabetes Mellitus, 2017; 20 (5): 335–342. doi: 10.14341/DM9372 (In Russ.)].

9. Болезни печени: Руководство для врачей / С.Д. Подымова. 5-е изд., перераб. и доп. М.: ООО «Медицинское информационное агентство», 2018. 984 с. [Liver diseases: A guide for doctors / S.D. Podymova. Ed. 5th, reprint. and add. Moscow: Medical Information Agency LLC, 2018. 984 p. (In Russ.)].

10. Paredes A.H., Torres D.M., Harrison S.A. Nonalcoholic fatty liver disease. Clinics in Liver Disease, 2012; 16 (2): 397–419.

11. Sanyal A.J., Abdelmalek M.F., Suzuki A., Cummings O.W., Chojkier M.; EPE-A Study Group. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology, 2014; 147 (2): 377–384.e1. doi: 10.1053/j.gastro.2014.04.046

12. Arab L., Akbar J. Biomarkers and the measurement of fatty acids. Public Health Nutr., 2002; 5 (6A): 865–871. doi: 10.1079/phn2002391

13. Zeleniuch-Jacquotte A., Chajès V., van Kappel A.L., Riboli E., Toniolo P. Reliability of fatty acid composition in human serum phospholipids. Eur. J. Clin. Nutr., 2000; 54 (5): 367–372. doi: 10.1038/sj.ejcn.1600964

14. Recommendations of the VNOK experts on the diagnosis and treatment of metabolic syndrome (second revision). Cardiovascular Therapy and Prevention, 2009: 6 (2). (In Russ.)].

15. Khang A.R., Lee H.W., Yi D.W., Kang Y.H., Son S.M. The fatty liver index, a simple and useful predictor of metabolic syndrome: analysis of the Korea National Health and Nutrition Examination Survey 2010–2011. Diabetes Metab. Syndr. Obes., 2019; 12: 181–190. https://doi.org/10.2147/DMSO.S189544

16. Ivashkin V.T., Mayevskaya M.V., Pavlov Ch.S., Tikhonov I.N., Shirokova E.N., Bueverov A.O., Drapkina O.M., Shulpekova Yu.O., Tsukanov V.V., Mammaev S.N., Mayev I.V., Palgova L.K. Clinical recommendations for the diagnosis and treatment of non-alcoholic fatty liver disease The Russian Society for the Study of the Liver and the Russian Gastroenterological Association. Rus. J. Gastroenterology, Hepatology, Coloproctology, 2016; 26 (2): 24–42. https://doi.org/10.22416/1382-43762016-26-2-24-42 (In Russ.)].

17. Dietrich C.F., Bamber J., Berzigotti A., Bota S., Cantisani V., Castera L., Cosgrove D., Ferraioli G., Friedrich-Rust M., Gilja O.H., Goertz R.S., Karlas T., de Knegt R., de Ledinghen V., Piscaglia F., Procopet B., Saftoiu A., Sidhu P.S., Sporea I., Thiele M. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall. Med., 2017; 38 (4): e16–e47. doi: 10.1055/s-0043-103952

18. Kruchinina M.V., Kruchinin V.N., Prudnikova Ya.I., Gromov A.A., Shashkov M.V., Sokolova A.S. Investigation of the level of fatty acids of erythrocyte membranes and blood serum in patients with colorectal cancer in Novosibirsk. Adv. Mol. Oncol., 2018; 5 (2): 50–61. doi:10.17650/2313805X-2018-5-2-50-61 (In Russ.)].

19. Cansanção K., Silva Monteiro L., Carvalho Leite N., Dávalos A., Tavares do Carmo MDG, Arantes Ferreira Peres W. Advanced Liver Fibrosis Is Independently Associated with Palmitic Acid and Insulin Levels in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients, 2018; 10 (11): 1586. doi: 10.3390/nu10111586

20. Breiman L. Random Forests. Machine Learning, 2001; 45: 5–32. https://doi.org/10.1023/A:1010933404324

21. Fedchuk L., Nascimbeni F., Pais R., Charlotte F., Housset C., Ratziu V. LIDO Study Group. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther., 2014; 40 (10): 1209–1222. doi: 10.1111/apt.12963

22. Leoni S., Tovoli F., Napoli L., Serio I., Ferri S., Bolondi L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J. Gastroenterol., 2018; 24 (30): 3361–3373. doi: 10.3748/wjg.v24.i30.3361

23. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol., 2015; 63: j237–j264. doi: 10.1016/j.jhep.2015.04.006

24. Zhang X., Wong G.L., Wong V.W. Application of transient elastography in nonalcoholic fatty liver disease. Clin. Mol. Hepatol., 2020; 26 (2): 128–141. doi: 10.3350/cmh.2019.0001n

25. Tamura S., Shimomura I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Invest., 2005; 115 (5): 1139–1142. doi: 10.1172/JCI24930

26. Yamada K., Mizukoshi E., Sunagozaka H., Arai K., Yamashita T., Takeshita Y., Misu H., Takamura T., Kitamura S., Zen Y., Nakanuma Y., Honda M., Kaneko S. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int., 2015; 35 (2): 582–590. doi: 10.1111/liv.12685

27. Arain S.Q., Talpur F.N., Channa N.A., Ali M.S., Afridi H.I. Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients. Lipids Health Dis., 2017; 16 (1): 51. doi: 10.1186/s12944017-0437-2

28. Duan N.N., Liu X.J., Wu J. Palmitic acid elicits hepatic stellate cell activation through inflammasomes and hedgehog signaling. Life Sci., 2017; 176: 42–53. doi: 10.1016/j.lfs.2017.03.012

29. Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K., Contos M.J., Sterling R.K., Fuchs M., Zhou H., Watkins S.M., Sanyal A.J. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 2009; 50 (6): 1827–1838. doi: 10.1002/hep.23229

30. Lee J.J., Lambert J.E., Hovhannisyan Y., Ramos-Roman M.A., Trombold J.R., Wagner D.A., Parks E.J. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr., 2015; 101 (1): 34–43. doi: 10.3945/ajcn.114.092262

31. Marin-Alejandre B.A., Abete I., Monreal J.I., Elorz M., Benito-Boillos A., Herrero J.I., NavarroBlasco I., Tur J.A., Bandarra N.M., Zulet M.A., Martinez J.A. Effects of a 6-month dietary-induced weight loss on erythrocyte membrane omega-3 fatty acids and hepatic status of subjects with nonalcoholic fatty liver disease: The Fatty Liver in Obesity study. J. Clin. Lipidol., 2020; 14 (6): 837–849.e2. doi: 10.1016/j.jacl.2020.08.007

32. Allard J.P., Aghdassi E., Mohammed S., Raman M., Avand G., Arendt B.M., Jalali P., Kandasamy T., Prayitno N., Sherman M., Guindi M., Ma D.W., Heathcote J.E. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J. Hepatol., 2008; 48 (2): 300–307. doi: 10.1016/j.jhep.2007.09.009

33. Poppitt S.D., Kilmartin P., Butler P., Keogh G.F. Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary MUFA, PUFA or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis., 2005; 4: 30. doi: 10.1186/1476-511X-4-30

34. Jenkins B., West J.A., Koulman A. A review of oddchain fatty acid metabolism and the role of pentadecanoic Acid (c15:0) and heptadecanoic Acid (c17:0) in health and disease. Molecules, 2015; 20 (2): 2425–2444. doi: 10.3390/molecules20022425

35. Khaw K.T., Friesen M.D., Riboli E., Luben R., Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC-Norfolk prospective study. PLoS Med., 2012; 9 (7): e1001255. doi: 10.1371/journal.pmed.1001255

36. Meikle P.J., Wong G., Barlow C.K., Weir J.M., Greeve M.A., MacIntosh G.L., Almasy L., Comuzzie A.G., Mahaney M.C., Kowalczyk A., Haviv I., Grantham N., Magliano D.J., Jowett J.B., Zimmet P., Curran J.E., Blangero J., Shaw J. Plasma lipid profiling shows similar associations with prediabetes and type 2 diabetes. PLoS One, 2013; 8 (9): e74341. doi: 10.1371/journal.pone.0074341

37. Forouhi N.G., Koulman A., Sharp S.J., Imamura F., Kröger J., Schulze M.B., Crowe F.L., Huerta J.M., Guevara M., Beulens J.W., van Woudenbergh G.J., Wang L., Summerhill K., Griffin J.L., Feskens E.J., Amiano P., Boeing H., Clavel-Chapelon F., Dartois L., Fagherazzi G., Franks P.W., Gonzalez C., Jakobsen M.U., Kaaks R., Key T.J., Khaw K.T., Kühn T., Mattiello A., Nilsson P.M., Overvad K., Pala V., Palli D., Quirós J.R., Rolandsson O., Roswall N., Sacerdote C., Sánchez M.J., Slimani N., Spijkerman A.M., Tjonneland A., Tormo M.J., Tumino R., van der A D.L., van der Schouw Y.T., Langenberg C., Riboli E., Wareham N.J. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol., 2014; 2 (10): 810–818. doi: 10.1016/S2213-8587(14)70146-9

38. Yoo W., Gjuka D., Stevenson H.L., Song X., Shen H., Yoo S.Y., Wang J., Fallon M., Ioannou G.N., Harrison S.A., Beretta L. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS One, 2017; 12 (12): e0189965. doi: 10.1371/journal.pone.0189965

39. Walle P., Takkunen M., Männistö V., Vaittinen M., Lankinen M., Kärjä V., Käkelä P., Ågren J., Tiainen M., Schwab U., Kuusisto J., Laakso M., Pihlajamäki J. Fatty acid metabolism is altered in nonalcoholic steatohepatitis independent of obesity. Metabolism, 2016; 65 (5): 655–666. doi: 10.1016/j.metabol.2016.01.011

40. Zhou Y., Orešič M., Leivonen M., Gopalacharyulu P., Hyysalo J., Arola J., Verrijken A., Francque S., van Gaal L., Hyötyläinen T., Yki-Järvinen H. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin. Gastroenterol. Hepatol., 2016; 14 (10): 1463–1472.e6. doi: 10.1016/j.cgh.2016.05.046

41. Pereira S., Breen D.M., Naassan A.E., Wang P.Y., Uchino H., Fantus I.G., Carpentier A.C., GutierrezJuarez R., Brindley D.N., Lam T.K., Giacca A. In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity. Metabolism: Clin. and Exp., 2015; 64: 315–322. doi: 10.1016/J.Metabol.2014.10.019

42. Hudgins L.C., Hellerstein M., Seidman C., Neese R., Diakun J., Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Invest., 1996; 97 (9): 2081–2091. doi: 10.1172/JCI118645

43. Puri P., Baillie R.A., Wiest M.M., Mirshahi F., Choudhury J., Cheung O., Sargeant C., Contos M.J., Sanyal A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology, 2007; 46 (4): 1081–1090. doi: 10.1002/hep.21763

44. Scorletti E., Byrne C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu Rev. Nutr., 2013; 33: 231–248. doi: 10.1146/annurev-nutr-071812-161230

45. Nobili V., Carpino G., Alisi A., de Vito R., Franchitto A., Alpini G., Onori P., Gaudio E. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease. PLoS One, 2014; 9 (2): e88005. doi: 10.1371/journal.pone.0088005

46. Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Chiang N., Gronert K. Novel functional sets of lipidderived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med., 2000; 192 (8): 1197–1204. doi: 10.1084/jem.192.8.1197

47. Serhan C.N., Hong S., Gronert K., Colgan S.P., Devchand P.R., Mirick G., Moussignac R.L. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med., 2002; 196 (8): 1025–1037. doi: 10.1084/jem.20020760. PMID: 12391014

48. Serhan C.N., Chiang N., van Dyke T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008; 8 (5): 349–361. doi: 10.1038/nri2294

49. Bazan N.G. Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids, 2009; 81 (2-3): 205–211. doi: 10.1016/j.plefa.2009.05.024

50. Parker H.M., Johnson N.A., Burdon C.A., Cohn J.S., O’Connor H.T., George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J. Hepatol., 2012; 56 (4): 944–951. doi: 10.1016/j.jhep.2011.08.018

51. Scorletti E., Bhatia L., McCormick K.G., Clough G.F., Nash K., Hodson L., Moyses H.E., Calder P.C., Byrne C.D.; WELCOME Study. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study. Hepatology, 2014; 60 (4): 1211–1221. doi: 10.1002/hep.27289

52. Argo C.K., Patrie J.T., Lackner C., Henry T.D., de Lange E.E., Weltman A.L., Shah N.L., Al-Osaimi A.M., Pramoonjago P., Jayakumar S., Binder L.P., Simmons-Egolf W.D., Burks S.G., Bao Y., Taylor A.G., Rodriguez J., Caldwell S.H. Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. J. Hepatol., 2015; 62 (1): 190–197. doi: 10.1016/j.jhep.2014.08.036

53. Taganovich A.D., Oletsky E.I., Kotovich I.L. Pathological biochemistry. Under the general ed. A.D. Taganovicha. Moscow: BINOM Publishing House, 2013. 448 p. (in Russ.)].


Review

For citations:


Kruchinina M.V., Parulikova M.V., Pershina N.E., Kruchinina E.V. Fatty acids of erythrocyte membranes as biomarkers of non-alcoholic fatty liver disease in men. Ateroscleroz. 2022;18(4):362-380. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-4-362-380

Views: 283


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)