Analysis of the association of the common variant rs13107325 of the divalent cation transporter gene SLC39A8 with the lipid profile among Novosibirsk adolescents
https://doi.org/10.52727/2078-256X-2022-18-4-354-361
Abstract
Violation of lipid metabolism is one of the main risk factors for the atherosclerosis in humans. In the course of genome-wide association studies, dozens of gene variants have been identified, to be responsible for predisposition to dyslipidemias. However, many of the associations are either not confirmed by replication or turn out to be specific for certain populations. The aim of the study was to assess the prevalence of one of the most pleiotropic polymorphisms of the human genome – rs13107325 – in a population sample of adolescents in Novosibirsk and to analyze its association with lipid metabolism. The study used blood samples and data from examinations of 1582 adolescents collected during a standardized medical examination at the Institute of Internal and Preventive Medicine – branch of ICG SB RAS. Genotyping for rs13107325 of the SLC39A8 gene was carried out using real-time PCR. A one-way ANOVA was used to assess the correlation of genotypes with lipid levels and body mass index. It was shown that the frequencies of the rs13107325 variant among whites of Western Siberia are lower than the European ones (p = 0.05 ± 0.004). An association with lipid metabolism (total cholesterol, triglyceride and high-density lipoprotein cholesterol level) as well as with body mass index was not confirmed either overall or in any of the groups differing in sampling periods (contrasting in the average food intake). This may indicate that the contribution of the rs13107325 variant to dyslipidemia in adolescents in Western Siberia is insignificant, and the average food intake does not affect the penetrance of rs13107325 in relation to lipid metabolism disorders and body mass index.
Keywords
About the Authors
S. V. MikhailovaRussian Federation
Svetlana V. Mikhailova, doctor of medical sciences, head of the laboratory of human molecular genetics
10, Academician Lavrentiev av., Novosibirsk, 630090
D. E. Ivanoshchuk
Russian Federation
Dinara E. Ivanoshchuk, junior researcher at the laboratory of human molecular genetics
10, Academician Lavrentiev av., Novosibirsk, 630090
P. S. Orlov
Russian Federation
Pavel S. Orlov, junior researcher at the laboratory of human molecular genetics
10, Academician Lavrentiev av., Novosibirsk, 630090
D. V. Denisova
Russian Federation
Diana V. Denisova, doctor of medical sciences, MD, chief researcher, laboratory of preventive medicine
175/1, Boris Bogatkov str., Novosibirsk, 630089
E. V. Shakhtshneider
Russian Federation
Elena V. Shakhtshneider, candidate of biological sciences, MD, leading researcher, head of the division of monogenic forms of human common disease
10, Academician Lavrentiev av., Novosibirsk, 630090
175/1, Boris Bogatkov str., Novosibirsk, 630089
References
1. Nebert D.W., Liu Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum. Genomics., 2019; 13 (Suppl 1): 51. doi: 10.1186/s40246-019-0233-3
2. Zhang R., Witkowska K., Afonso Guerra-Assunção J., Ren M., Ng F.L., Mauro C., Tucker A.T., Caulfield M.J., Ye S. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum. Mol. Genet., 2016; 25 (18): 4117–4126. doi: 10.1093/hmg/ddw236
3. Pickrell J.K., Berisa T., Liu J.Z., Ségurel L., Tung J.Y., Hinds D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet., 2016; 48 (7): 709–717. doi: 10.1038/ng.3570
4. Waterworth D.M., Ricketts S.L., Song K., Chen L., Zhao J.H., Ripatti S., Aulchenko Y.S., Zhang W., Yuan X., Lim N. et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2010; 30 (11): 2264–2276. doi: 10.1161/ATVBAHA.109.201020
5. Speliotes E.K., Willer C.J., Berndt S.I., Monda K.L., Thorleifsson G., Jackson A.U., Lango Allen H., Lindgren C.M., Luan J., Mägi R. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet., 2010; 42 (11): 937–948. doi: 10.1038/ng.686
6. Fujishiro H., Miyamoto S., Sumi D., Kambe T., Himeno S. Effects of individual amino acid mutations of zinc transporter ZIP8 on manganese- and cadmium-transporting activity. Biochem. Biophys. Res. Commun., 2022; 616: 26–32. doi: 10.1016/j.bbrc.2022.05.068
7. Steimle B.L., Smith F.M., Kosman D.J. The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J. Biol. Chem., 2019; 294 (50): 19197–19208. doi: 10.1074/jbc.RA119.009371
8. Bruenig D., White M.J., Young R.M., Voisey J. Subclinical psychotic experiences in healthy young adults: associations with stress and genetic predisposition. Genet. Test. Mol. Biomarkers., 2014; 18 (10): 683–689. doi: 10.1089/gtmb.2014.0111
9. Carrera N., Arrojo M., Sanjuán J., Ramos-Ríos R., Paz E., Suárez-Rama J.J., Páramo M., Agra S., Brenlla J., Martínez S. et al. Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol. Psychiat., 2012; 71 (2): 169–177. doi: 10.1016/j.biopsych.2011.09.032
10. Wahlberg K.E., Guazzetti S., Pineda D., Larsson S.C., Fedrighi C., Cagna G., Zoni S., Placidi D., Wright R.O., Smith D.R. et al. Polymorphisms in manganese transporters slc30a10 and slc39a8 are associated with children’s neurodevelopment by influencing manganese homeostasis. Front. Genet., 2018; 9: 664. doi: 10.3389/fgene.2018.00664
11. Costas J. The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into the molecular pathogenesis of schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2018; 177 (2): 274–283. doi: 10.1002/ajmg.b.32545
12. Sunuwar L., Frkatović A., Sharapov S., Wang Q., Neu H.M., Wu X., Haritunians T., Wan F., Michel S., Wu S. et al. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. JCI Insight., 2020; 5 (20): e140978. doi: 10.1172/jci.insight.140978
13. Liu M.-J., Bao S., Gálvez-Peralta M., Pyle C.J., Rudawsky A.C., Pavlovicz R.E. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep., 2013; 3 (2): 386–400. doi: 10.1016/j.celrep.2013.01.009
14. Kraja A.T., Chasman D.I., North K.E., Reiner A.P., Yanek L.R., Kilpeläinen T.O., Smith J.A., Dehghan A., Dupuis J., Johnson A.D. et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab., 2014; 112 (4): 317–338. doi: 10.1016/j.ymgme.2014.04.007
15. Li D., Achkar J.P., Haritunians T., Jacobs J.P., Hui K.Y., D’Amato M., Brand S., Radford-Smith G., Halfvarson J., Niess J.H. et al. A pleiotropic missense variant in slc39a8 is associated with crohn’s disease and human gut microbiome composition. Gastroenterology, 2016; 151 (4): 724–732. doi: 10.1053/j.gastro.2016.06.051
16. Tseng W.C., Reinhart V., Lanz T.A., Weber M.L., Pang J., Le K.X.V., Bell R.D., O’Donnell P., Buhl D.L. Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl. Psychiat., 2021; 11 (1): 136. doi: 10.1038/s41398-021-01262-5
17. Felix J.F., Bradfield J.P., Monnereau C., van der Valk R.J., Stergiakouli E., Chesi A., Gaillard R., Feenstra B., Thiering E., Kreiner-Møller E. et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet., 2016; 25 (2): 389–403. doi: 10.1093/hmg/ddv472
18. Vogelezang S., Bradfield J.P., Ahluwalia T.S., Curtin J.A., Lakka T.A., Grarup N., Scholz M., van der Most P.J., Monnereau C., Stergiakouli E. et al. Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genet., 2020; 16 (10): e1008718. doi: 10.1371/journal.pgen.1008718
19. Mägi R., Manning S., Yousseif A., Pucci A., Santini F., Karra E., Querci G., Pelosini C., McCarthy M.I., Lindgren C.M. et al. Contribution of 32 GWAS-identified common variants to severe obesity in European adults referred for bariatric surgery. PLoS One, 2013; 8 (8): e70735. doi: 10.1371/journal.pone.0070735
20. Willer C.J., Schmidt E.M., Sengupta S., Peloso G.M., Gustafsson S., Kanoni S., Ganna A., Chen J., Buchkovich M.L., Mora S. et al. Discovery and refinement of loci associated with lipid levels. Nat Genet., 2013; 45: 1274–1283. doi: 10.1038/ng.2797
21. Parisinos C.A., Wilman H.R., Thomas E.L., Kelly M., Nicholls R.C., McGonigle J., Neubauer S., Hingorani A.D., Patel R.S., Hemingway H. et al. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis. J. Hepatol., 2020; 73 (2): 241–251. doi: 10.1016/j.jhep.2020.03.032
22. Esslinger U., Garnier S., Korniat A., Proust C., Kararigas G., Müller-Nurasyid M., Empana J.P., Morley M.P., Perret C., Stark K. et al. Exome-wide association study reveals novel susceptibility genes to sporadic dilated cardiomyopathy. PLoS One, 2017; 12 (3): e0172995. doi: 10.1371/journal.pone.0172995
23. Johansson Å., Eriksson N., Lindholm D., Varenhorst C., James S., Syvänen A.C., Axelsson T., Siegbahn A., Barratt B.J., Becker R.C. et al. Genomewide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum. Mol. Genet., 2016; 25 (7): 1447–1456. doi: 10.1093/hmg/ddw012
24. Trifonova E.A., Popovich A.A., Makeeva O.A., Minaycheva L.I., Bocharova A.V., Vagaitseva K.V., Stepanov V.A. Replicative association analysis of genetic markers of obesity in the russian population. Russ. J. Genet., 2021; 57 (5): 620–625. doi: 10.1134/S1022795421050136 (In Russ.)
25. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret G.B., Munroe P.B., Rice K.M., Bochud M., Johnson A.D., Chasman D.I., Smith A.V., Tobin M.D., Verwoert G.C. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011; 478 (7367): 103–109. doi: 10.1038/nature10405
26. Johnson A.D., Newton-Cheh C., Chasman D.I., Ehret G.B., Johnson T., Rose L., Rice K., Verwoert G.C., Launer L.J., Gudnason V. et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension, 2011; 57 (5): 903–910. doi: 10.1161/HYPERTENSIONAHA.110.158667
27. Malyutina S.K., Maksimov V.N., Orlov P.S., Mazdorova E.V., Ryabikov A.N., Nikitin Yu.P., Voevoda M.I. The association of blood pressure and hypertension with genetic markers identified in genome-wide association studies. Rus. J. Cardiol., 2018; 23 (10): 8–13. http://dx.doi.org/10.15829/1560-4071-2018-108-13 (In Russ.)
28. Li M., Wu D.D., Yao Y.G., Huo Y.X., Liu J.W., Su B., Chasman D.I., Chu A.Y., Huang T., Qi L. et al. Recent positive selection drives the expansion of a schizophrenia risk nonsynonymous variant at SLC39A8 in Europeans. Schizophr Bull., 2016; 42 (1): 178–190. doi: 10.1093/schbul/sbv070
29. Broberg K., Taj T., Guazzetti S., Peli M., Cagna G., Pineda D., Placidi D., Wright R.O., Smith D.R., Lucchini R.G., Wahlberg K. Manganese transporter genetics and sex modify the association between environmental manganese exposure and neurobehavioral outcomes in children. Environ. Int., 2019; 130: 104908. doi: 10.1016/j.envint.2019.104908
30. Denisova D.V., Zavialova L.G. Long-term trends in selected indicators of physical development of adolescent population in Novosibirsk (populationbased study 1989–2009). The Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2011; 31 (5): 84–89. (In Russ.)
31. Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc., 2006; 2006 (1): pdb.prot4455. doi: 10.1101/pdb.prot4455
32. Stryukova E.V., Troshina M.S., Denisova D.V., Sukhanov A.V. Dynamics of blood lipid profile indicators in a prospective sample of young people aging 19–22 years in Novosibirsk for the fifth year period (2014–2019). Ateroscleroz, 2020; 16 (3): 39–44. doi: 10.15372/ATER20200305 (In Russ.)
33. Graff M., North K.E., Mohlke K.L., Lange L.A., Luo J., Harris K.M., Young K.L., Richardson A.S., Lange E.M., Gordon-Larsen P. Estimation of genetic effects on BMI during adolescence in an ethnically diverse cohort: The National Longitudinal Study of Adolescent Health. Nutr. Diabetes, 2012 Sep 24; 2 (9): e47. doi: 10.1038/nutd.2012.20
34. Kranzler H.R., Zhou H., Kember R.L., Vickers Smith R., Justice A.C., Damrauer S., Tsao P.S., Klarin D., Baras A., Reid J., Overton J., Rader D.J., Cheng Z., Tate J.P., Becker W.C., Concato J., Xu K., Polimanti R., Zhao H., Gelernter J. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun., 2019 Apr 2; 10 (1): 1499. doi: 10.1038/s41467-019-09480-8
35. Thompson A., Cook J., Choquet H., Jorgenson E., Yin J., Kinnunen T., Barclay J., Morris A.P., Pirmohamed M. Functional validity, role, and implications of heavy alcohol consumption genetic loci. Sci. Adv., 2020 Jan 15; 6 (3): eaay5034. doi: 10.1126/sciadv.aay5034
Review
For citations:
Mikhailova S.V., Ivanoshchuk D.E., Orlov P.S., Denisova D.V., Shakhtshneider E.V. Analysis of the association of the common variant rs13107325 of the divalent cation transporter gene SLC39A8 with the lipid profile among Novosibirsk adolescents. Ateroscleroz. 2022;18(4):354-361. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-4-354-361