Preview

Ateroscleroz

Advanced search

Sudden cardiac death in young men: exome sequencing results

https://doi.org/10.52727/2078-256X-2022-18-4-317-337

Abstract

In one third of cases, the cause of sudden death remains unexplained after a standard forensic examination. If autopsy is negative, post-mortem molecular genetic testing is recommended in many countries.

The aim of the study was to evaluate the diagnostic significance of molecular autopsy by exome sequencing for young men who died of sudden cardiac death (SCD).

Material and methods. Exome sequencing of a group of young men (n = 37) who died SCD at the age under 45 years (mean age 32.4 ± 6.4 years) was performed. DNA was isolated by phenol-chloroform extraction from myocardial tissue. Whole exome analysis was performed on the Illumina platform. Confirmatory direct automated Sanger sequencing was performed for some of the identified variants.

Results. Of the 37 samples with SCD, analysis of 209 gene sequencing results revealed more than 30 variants in 17 samples (46 %) likely related to the SCD phenotype. The mutations found are localized in the genes associated with phenotypes leading to the development of SCD (HCM, DCM, cardiac arrhythmias).

Conclusions. For the first time in Russia, exome sequencing of DNA samples for men who died from SCD before the age of 45 was performed. Molecular autopsy by exome sequencing is an effective method for searching for causal variants of the nucleotide sequence in SCD.

About the Authors

A. A. Ivanova
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Anastasiya A. Ivanova, candidate of medical sciences, senior researcher at the laboratory of molecular genetic studies of therapeutic diseases

175/1, Boris Bogatkov str., Novosibirsk, 630089



D. E. Ivanoshchuk
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Dinara E. Ivanoshchuk, researcher at the laboratory of molecular genetic studies of therapeutic diseases

175/1, Boris Bogatkov str., Novosibirsk, 630089



P. S. Orlov
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Pavel S. Orlov, researcher at the laboratory of molecular genetic studies of therapeutic diseases

175/1, Boris Bogatkov str., Novosibirsk, 630089



I. A. Rodina
Novosibirsk Regional Office of Forensic Medical Examination
Russian Federation

Irina A. Rodina, candidate of medical sciences, doctor of forensic medicine

134, Nemirovich-Danchenko str., Novosibirsk, 630087



O. V. Khamovich
Novosibirsk Regional Office of Forensic Medical Examination
Russian Federation

Olesya V. Khamovich, candidate of medical sciences, doctor of forensic medicine

134, Nemirovich-Danchenko str., Novosibirsk, 630087



S. K. Malyutina
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Sofya K. Malyutina, doctor of medical sciences, professor, head of the laboratory of etiopathogenesis and clinic of internal medicine

175/1, Boris Bogatkov str., Novosibirsk, 630089



V. P. Novoselov
Novosibirsk Regional Office of Forensic Medical Examination
Russian Federation

Vladimir P. Novoselov, doctor of medical sciences, professor, head

134, Nemirovich-Danchenko str., Novosibirsk, 630087



V. N. Maksimov
Research Institutе of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University of Minzdrav of Russia
Russian Federation

Vladimir N. Maksimov, doctor of medical sciences, professor, head of the laboratory of molecular genetic studies of therapeutic diseases

175/1, Boris Bogatkov str., Novosibirsk, 630089

52, Krasnyj av., Novosibirsk, 630091



References

1. Rueda M., Wagner J.L., Phillips T.C., Topol S.E., Muse E.D., Lucas J.R., Wagner G.N., Topol E.J., Torkamani A. Molecular autopsy for sudden death in the young: Is data aggregation the key? Front. Cardiovasc. Med., 2017; 4: 72. doi: 10.3389/fcvm.2017.00072

2. Banner J., Basso C., Tolkien Z., Kholova I., Michaud K., Gallagher P.J. Autopsy examination in sudden cardiac death: a current perspective on behalf of the Association for European Cardiovascular Pathology. Virchows Arch., 2021; 478 (4): 687–693. doi: 10.1007/s00428-020-02949-8

3. Basso C., Aguilera B., Banner J., Cohle S., d’Amati G., de Gouveia R.H., di Gioia C., Fabre A., Gallagher P.J., Leone O., Lucena J., Mitrofanova L., Molina P., Parsons S., Rizzo S., Sheppard M.N., Mier M.P.S., Kim Suvarna S., Thiene G., van der Wal A., Vink A., Michaud K.; Association for European Cardiovascular Pathology. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch., 2017; 471 (6): 691–705. doi: 10.1007/s00428-017-2221-0

4. Bagnall R.D., Singer E.S., Tfelt-Hansen J. Sudden cardiac death in the young. Heart Lung Circ., 2020; 29 (4): 498–504. doi: 10.1016/j.hlc.2019.11.007

5. Revishvili A.Sh., Neminushhij N.M., Batalov R.E., Giljarov M.Ju., Golicyn S.P., Davtjan K.V., Dumpis Ja.Ju., Didenko M.V., Zenin S.A., Ivanickij Je.A., Komoljatova V.N., Kravcova L.A., Krivolapov S.N., Kuzovlev A.N., Kupcov V.V., Lebedev D.S., Lebedeva V.K., Linchak R.M., Lomidze N.N., Makarov L.M., Mironov N.Ju., Medvedev M.M., Mihajlov E.N., Nedbajkin A.M., Nesterenko L.Ju., Romanov A.B., Rzaev F.G., Solohin Ju.A., Tatarskij R.B., Harlap M.S., Chapurnyh A.V., Shlevkov N.B., Shubik Ju.V., S.m. Jashin K.Je., Revishvili A.Sh., Bojcov S.A., Golicyn S.P., Egorov D.F., Zakljaz’minskaja E.V., Kuznecov V.A., Lebedev D.S., Makarov L.M., Moroz V.V., Pokushalov E.A., Popov S.V., Shkol’nikova M.A., Shubik Ju.V., Jashin S.M. Russian clinical guidelines for the control of the risk of sudden cardiac arrest and sudden cardiac death, prevention and first aid. J. Arrhythmol., 2017; 89: 2–104. (In Russ.)

6. Shanks G.W., Tester D.J., Ackerman J.P., Simpson M.A., Behr E.R., White S.M., Ackerman M.J. Importance of variant interpretation in whole-exome molecular autopsy: population-based case series. Circulation, 2018; 137 (25): 2705–2715. doi: 10.1161/CIRCULATIONAHA.117.031053

7. Ripoll-Vera T., Pérez Luengo C., Borondo Alcázar J.C., García Ruiz A.B., Sánchez Del Valle N., Barceló Martín B., Poncela García J.L., Gutiérrez Buitrago G., Dasi Martínez C., Canós Villena J.C., Moyano Corvillo S., Esgueva Pallarés R., Sancho Sancho J.R., Guitart Pinedo G., Hernández Marín E., García García E., Vingut López A., Álvarez Rubio J., Govea Callizo N., Gómez Pérez Y., Melià Mesquida C., Heine D., Rosell Andreo J., Socías Crespí L. Sudden cardiac death in persons aged 50 years or younger: diagnostic yield of a regional molecular autopsy program using massive sequencing. Rev. Esp. Cardiol. (Engl. Ed.), 2021; 74 (5): 402–413. doi: 10.1016/j.rec.2020.03.030

8. Neubauer J., Lecca M.R., Russo G., Bartsch C., Medeiros-Domingo A., Berger W., Haas C. Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int. J. Legal. Med., 2018; 132 (4): 1057–1065. doi: 10.1007/s00414-018-1775-y

9. Kjerrumgaard A., Jacobsen E.M., Hansen B.L., TfeltHansen J., Winkel B.G., Christensen A.H., Bundgaard H. Diagnostic findings and follow-up outcomes in relatives to young non-autopsied sudden death victims. Int. J. Cardiol., 2020; 318: 61–66. doi: 10.1016/j.ijcard.2020.06.012

10. Maksimov V.N., Ivanoshchuk D.E., Orlov P.S., Ivanova A.A., Malyutina S.K., Maksimova S.V., Rodina I.A., Khamovich O.V., Novoselov V.P., Voevoda M.I. Next generation sequencing in sudden cardiac death (pilot study). Rus. J. Cardiol., 2020; 25 (10): 3880. doi: 10.15829/1560-4071-2020-3880 (In Russ.)

11. Wilde A.A.M., Semsarian C., Márquez M.F., Sepehri Shamloo A., Ackerman M.J., Ashley E.A., Sternick E.B., Barajas-Martinez H., Behr E.R., Bezzina C.R., Breckpot J., Charron P., Chockalingam P., Crotti L., Gollob M.H., Lubitz S., Makita N., Ohno S., Ortiz-Genga M., Sacilotto L., SchulzeBahr E., Shimizu W., Sotoodehnia N., Tadros R., Ware J.S., Winlaw D.S., Kaufman E.S.; Document Reviewers, Aiba T., Bollmann A., Choi J.I., Dalal A., Darrieux F., Giudicessi J., Guerchicoff M., Hong K., Krahn A.D., MacIntyre C., Mackall J.A., Mont L., Napolitano C., Ochoa J.P., Peichl P., Pereira A.C., Schwartz P.J., Skinner J., Stellbrink C., Tfelt-Hansen J., Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus statement on the state of genetic testing for cardiac diseases. Heart Rhythm, 2022; 19 (7): e1–e60. doi: 10.1016/j.hrthm.2022.03.1225

12. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L., Chapman M.J., de Backer G.G., Delgado V., Ference B.A., Graham I.M., Halliday A., Landmesser U., Mihaylova B., Pedersen T.R., Riccardi G., Richter D.J., Sabatine M.S., Taskinen M., Tokgozoglu L., Wiklund O. 2019 ESC/ EAS Guidelines for themanagement of dyslipidaemias: lipid modification to reduce cardiovascular risk. Rus. J. Cardiol., 2020; 25 (5): 3826. doi: 10.15829/15604071-2020-3826 (In Russ.)

13. Shljahto E.V., Arutjunov G.P., Belenkov Ju.N., Ardashev A.V. Recommendations for determining the risk and prevention of sudden cardiac death. The Russian Archives of Internal Medicine, 2013; 4: 5–15. doi: 10.20514/2226-6704-2013-0-4-5-15 (In Russ.)

14. Hess P.L., Al-Khalidi H.R., Friedman D.J., Mulder H., Kucharska-Newton A., Rosamond W.R., Lopes R.D., Gersh B.J., Mark D.B., Curtis L.H., Post W.S., Prineas R.J., Sotoodehnia N., Al-Khatib S.M. The metabolic syndrome and risk of sudden cardiac death: the atherosclerosis risk in communities study. J. Am. Heart. Assoc., 2017; 6 (8): e006103. doi: 10.1161/JAHA.117.006103

15. Kirchhof P., Fabritz L. High-density lipoprotein shortens the ventricular action potential. A novel explanation for how statins prevent sudden arrhythmic death? J. Am. Coll. Cardiol., 2011; 58 (1): 45–47. doi: 10.1016/j.jacc.2010.12.048

16. Olson K.A., Patel R.B., Ahmad F.S., Ning H., Bogle B.M., Goldberger J.J., Lloyd-Jones D.M. Sudden cardiac death risk distribution in the United States population (from NHANES, 2005 to 2012). Am. J. Cardiol., 2019; 123 (8): 1249–1254. doi: 10.1016/j.amjcard.2019.01.020

17. Sadeghi M., Golshahi J., Talaei M., Sheikhbahaei E., Ghodjani E., Mansouri M., Mansouri P., Sarrafzadegan N., Roohafza H. 15-Year lipid profile effects on cardiovascular events adjusted for cardiovascular risk factors: a cohort study from MiddleEast. Acta Cardiol., 2021; 76 (2): 194–199. doi: 10.1080/00015385.2020.1717096

18. Authors/Task Force members, Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P., Hagege A.A., Lafont A., Limongelli G., Mahrholdt H., McKenna W.J., Mogensen J., Nihoyannopoulos P., Nistri S., Pieper P.G., Pieske B., Rapezzi C., Rutten F.H., Tillmanns C., Watkins H. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart. J., 2014; 35 (39): 2733–2779. doi: 10.1093/eurheartj/ehu284

19. Miller D.T., Lee K., Chung W.K., Gordon A.S., Herman G.E., Klein T.E., Stewart D.R., Amendola L.M., Adelman K., Bale S.J., Gollob M.H., Harrison S.M., Hershberger R.E., McKelvey K., Richards C.S., Vlangos C.N., Watson M.S., Martin C.L.; ACMG Secondary Findings Working Group. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med., 2021; 23 (8): 1381–1390. doi: 10.1038/s41436-021-01172-3

20. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Rebrikov D.V., Savostianov K.V., Glotov A.S., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Med. Genet., 2019; 18 (2): 3–23. doi: 10.25557/2073-7998.2019.02.3-23 (In Russ.)

21. FLNC filamin C [Homo sapiens (human)] https://www.ncbi.nlm.nih.gov/gene/2318

22. Mangum K.D., Ferns S.J. A novel familial truncating mutation in the filamin C gene associated with cardiac arrhythmias. Eur. J. Med. Genet., 2019; 62 (4): 282–285. doi: 10.1016/j.ejmg.2018.08.006

23. Sveinbjornsson G., Olafsdottir E.F., Thorolfsdottir R.B., Davidsson O.B., Helgadottir A., Jonasdottir A., Jonasdottir A., Bjornsson E., Jensson B.O., Arnadottir G.A., Kristinsdottir H., Stephensen S.S., Oskarsson G., Gudbjartsson T., Sigurdsson E.L., Andersen K., Danielsen R., Arnar D.O., Jonsdottir I., Thorsteinsdottir U., Sulem P., Thorgeirsson G., Gudbjartsson D.F., Holm H., Stefansson K. Variants in NKX2-5 and FLNC cause dilated cardiomyopathy and sudden cardiac death. Circ. Genom. Precis. Med., 2018; 11 (8): e002151. doi: 10.1161/CIRCGEN.117.002151

24. rs727504479. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs727504479?vertical_tab=true

25. rs199473660. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs199473660?vertical_tab=true

26. Burashnikov E., Pfeiffer R., Barajas-Martinez H., Delpón E., Hu D., Desai M., Borggrefe M., Häissaguerre M., Kanter R., Pollevick G.D., Guerchicoff A., Laiño R., Marieb M., Nademanee K., Nam G.B., Robles R., Schimpf R., Stapleton D.D., Viskin S., Winters S., Wolpert C., Zimmern S., Veltmann C., Antzelevitch C. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 2010; 7 (12): 1872–1882. doi: 10.1016/j.hrthm.2010.08.026

27. Maltese P.E., Aldanova E., Kriuchkova N., Averianov A., Manara E., Paolacci S., Bruson A., Miotto R., Sartori M., Guerri G., Zuntini M., Marceddu G., Tezzele S., Tadtaeva K., Chernova A., Aksyutina N., Nikulina S., Nodari S., Bertelli M. Putative role of Brugada syndrome genes in familial atrial fibrillation. Eur. Rev. Med. Pharmacol. Sci., 2019; 23 (17): 7582–7598. doi: 10.26355/eurrev_201909_18880

28. Hu D., Barajas-Martinez H., Nesterenko V.V., Pfeiffer R., Guerchicoff A., Cordeiro J.M., Curtis A.B., Pollevick G.D., Wu Y., Burashnikov E., Antzelevitch C. Dual variation in SCN5A and CACNB2b underlies the development of cardiac conduction disease without Brugada syndrome. Pacing Clin. Electrophysiol., 2010; 33 (3): 274–285. doi: 10.1111/j.1540-8159.2009.02642.x

29. Frank M., Albuisson J., Ranque B., Golmard L., Mazzella J.M., Bal-Theoleyre L., Fauret A.L., Mirault T., Denarié N., Mousseaux E., Boutouyrie P., Fiessinger J.N., Emmerich J., Messas E., Jeunemaitre X. The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur. J. Hum. Genet., 2015; 23 (12): 1657–1664. doi: 10.1038/ejhg.2015.32

30. Pepin M.G., Schwarze U., Rice K.M., Liu M., Leistritz D., Byers P.H. Survival is affected by mutation type and molecular mechanism in vascular EhlersDanlos syndrome (EDS type IV). Genet. Med., 2014; 16 (12): 881–888. doi: 10.1038/gim.2014.72

31. Hereditary disorders of connective tissue in cardiology. Diagnosis and treatment. Rus. J. Cardiol., 2013; (1s1): 5–32. doi: 10.15829/1560-4071-20131s1-5-32 (In Russ.)

32. rs201754030. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs201754030?horizontal_tab=true

33. Ahola S., Isohanni P., Euro L., Brilhante V., Palotie A., Pihko H., Lönnqvist T., Lehtonen T., Laine J., Tyynismaa H., Suomalainen A. Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy. Neurology, 2014; 83 (8): 743–751. doi: 10.1212/WNL.0000000000000716

34. Blankenburg R., Hackert K., Wurster S., Deenen R., Seidman J.G., Seidman C.E., Lohse M.J., Schmitt J.P. β-Myosin heavy chain variant Val606Met causes very mild hypertrophic cardiomyopathy in mice, but exacerbates HCM phenotypes in mice carrying other HCM mutations. Circ. Res., 2014; 115 (2): 227–237. doi: 10.1161/CIRCRESAHA.115.303178

35. Zheng D.D., Yang J.H., Tao Q., Geng M., Lin J., Yang X.J., Song J.P., Li H.X., Han L.H., Jiang W.P. Mutations in the beta-myosin heavy chain gene in southern Chinese families with hypertrophic cardiomyopathy. J. Int. Med. Res., 2010; 38 (3): 810–820. doi: 10.1177/147323001003800308

36. rs72648272. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs72648272?vertical_tab=true

37. Sanchez O., Campuzano O., Fernández-Falgueras A., Sarquella-Brugada G., Cesar S., Mademont I., Mates J., Pérez-Serra A., Coll M., Pico F., Iglesias A., Tirón C., Allegue C., Carro E., Gallego M.Á., Ferrer-Costa C., Hospital A., Bardalet N., Borondo J.C., Vingut A., Arbelo E., Brugada J., Castellà J., Medallo J., Brugada R. Natural and undetermined sudden death: value of post-mortem genetic investigation. PLoS One, 2016; 11 (12): e0167358. doi: 10.1371/journal.pone.0167358

38. AKAP9 A-kinase anchoring protein 9 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/10142

39. Methner D.N., Scherer S.E., Welch K., Walkiewicz M., Eng C.M., Belmont J.W., Powell M.C., Korchina V., Doddapaneni H.V., Muzny D.M., Gibbs R.A., Wolf D.A., Sanchez L.A., Kahn R. Postmortem genetic screening for the identification, verification, and reporting of genetic variants contributing to the sudden death of the young. Genome Res., 2016; 26 (9): 1170–1177. doi: 10.1101/gr.195800.115

40. DSP desmoplakin [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/1832

41. Geier C., Gehmlich K., Ehler E., Hassfeld S., Perrot A., Hayess K., Cardim N., Wenzel K., Erdmann B., Krackhardt F., Posch M.G., Osterziel K.J., Bublak A., Nägele H., Scheffold T., Dietz R., Chien K.R., Spuler S., Fürst D.O., Nürnberg P., Ozcelik C. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy. Hum. Mol. Genet., 2008; 17 (18): 2753–2765. doi: 10.1093/hmg/ddn160

42. Lange S., Gehmlich K., Lun A.S., Blondelle J., Hooper C., Dalton N.D., Alvarez E.A., Zhang X., Bang M.L., Abassi Y.A., Dos Remedios C.G., Peterson K.L., Chen J., Ehler E. MLP and CARP are linked to chronic PKCα signalling in dilated cardiomyopathy. Nat. Commun., 2016; 7: 12120. doi: 10.1038/ncomms12120

43. rs72648237. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs72648237?horizontal_tab=true

44. rs200181804. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs200181804?horizontal_tab=true

45. rs201453600. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs201453600?horizontal_tab=true

46. , Hasdemir C., Juang J.J., Kose S., Kocabas U., Orman M.N., Payzin S., Sahin H., Celen C., Ozcan E.E., Chen C.J., Gunduz R., Turan O.E., Senol O., Burashnikov E., Antzelevitch C. Coexistence of atrioventricular accessory pathways and drug-induced type 1 Brugada pattern. Pacing Clin. Electrophysiol., 2018; 41 (9): 1078–1092. doi: 10.1111/pace.13414

47. SNTA1 syntrophin alpha 1 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/6640

48. rs143512106. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs143512106?horizontal_tab=true#publications

49. rs201453600. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs201453600?horizontal_tab=true

50. rs202014478. База данных dbSNP. https://www.ncbi.nlm.nih.gov/snp/rs202014478?horizontal_tab=true


Review

For citations:


Ivanova A.A., Ivanoshchuk D.E., Orlov P.S., Rodina I.A., Khamovich O.V., Malyutina S.K., Novoselov V.P., Maksimov V.N. Sudden cardiac death in young men: exome sequencing results. Ateroscleroz. 2022;18(4):317-337. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-4-317-337

Views: 564


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)