Preview

Ateroscleroz

Advanced search

Adipokines/cytokines and disturbances in lipid metabolism

https://doi.org/10.52727/2078-256X-2022-18-2-157-164

Abstract

This review presents the results of investigations in the field of studying the association of adipokines secreted by visceral adipocytes and the level of low-density lipoprotein cholesterol. In relation to this association, such adipokines as adiponectin, plasminogen activator inhibitor 1 (PAI-1), resistin, interleukin 1 beta (IL-1β), monocyte-chemoattractant protein type 1 (MCP-1), nerve growth factor (NGF), visfatin, omentin-1, and the pancreatic hormone insulin were analyzed. The results of studies that have studied the pathogenetic (in animal models) and clinical role of this association in humans are presented. Information on the topic from the publications of the PubMed, Google Scholar databases was used. 

About the Authors

A. N. Spiridonov
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Aleksandr N. Spiridonov, doctor-resident in the specialty «Cardiology»

175/1, Boris Bogatkov str., Novosibirsk, 630089



A. D. Khudiakova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Alena D. Khudiakova, Ph.D, head of the Laboratory of Genetic and Environmental Determinants of the Human Life Cycle

175/1, Boris Bogatkov str., Novosibirsk, 630089



Yu. I. Ragino
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Yuliia I. Ragino, DM, professor, corresponding member RAS, head

175/1, Boris Bogatkov str., Novosibirsk, 630089



References

1. Cnop M., Havel P.J., Utzschneider K.M., Carr D.B., Sinha M.K., Boyko E.J., Retzlaff B.M., Knopp R.H., Brunzell J.D., Kahn S.E. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia, 2003; 46 (4): 459–469. doi: 10.1007/s00125-003-1074-z

2. Ebrahimi R., Shanaki M., Mohassel Azadi S., Bahiraee A., Radmard A.R., Poustchi H., Emamgholipour S. Low level of adiponectin predicts the development of Nonalcoholic fatty liver disease: is it irrespective to visceral adiposity index, visceral adipose tissue thickness and other obesity indices? Arch. Physiol. Biochem., 2022; 128 (1): 24–31. doi: 10.1080/13813455.2019.1661496

3. Kozakova M., Muscelli E., Flyvbjerg A., Frystyk J., Morizzo C., Palombo C., Ferrannini E. Adiponectin and left ventricular structure and function in healthy adults. J. Clin. Endocrinol. Metab., 2008; 93: 2811–2818. doi: 10.1210/jc.2007-2580

4. Yanai H., Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int. J. Mol. Sci., 2019; 20 (5): 1190. doi: 10.3390/ijms20051190

5. Karataeva O.V. Features of adiponectin secretion and its relationship with some metabolic parameters in men of working age in the presence of obesity. Rossiiskiy meditsinskiy zhurnal, 2017; 23 (6): 312–315 (In Russ.)

6. Magge S.N., Stettler N., Koren D., Levitt Katz L.E., Gallagher P.R., Mohler E.R., Rader D.J. Adiponectin is associated with favorable lipoprotein profile, independent of BMI and insulin resistance, in adolescents. J. Clin. Endocrinol. Metab., 2011; 96 (5): 1549–1554. doi: 10.1210/jc.2010-2364

7. Lautamäki R., Rönnemaa T., Huupponen R., Lehtimäki T., Iozzo P., Airaksinen K.E., Knuuti J., Nuutila P. Low serum adiponectin is associated with high circulating oxidized low-density lipoprotein in patients with type 2 diabetes mellitus and coronary artery disease. Metabolism, 2007; 56 (7): 881–886. doi: 10.1016/j.metabol.2007.01.018

8. Liu Y.U., Cheng J., Guo X., Mo J., Gao B., Zhou H., Li Z. The roles of PAI-1 gene polymorphisms in atherosclerotic diseases: A systematic review and metaanalysis involving 149,908 subjects. Gene, 2018; 673: 167–173. doi: 10.1016/j.gene.2018.06.040

9. Jung R.G., Motazedian P., Ramirez F.D., Simard T., di Santo P., Visintini S., Faraz M.A., Labinaz A., Jung Y., Hibbert B. Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis. Thromb. J., 2018; 16: 12. doi: 10.1186/s12959-018-0166-4

10. Sillen M., Declerck P.J. Targeting PAI-1 in cardiovascular disease: structural insights into PAI-1 functionality and inhibition. Front. Cardiovasc. Med., 2020; 7: 364. doi: 10.3389/fcvm.2020.622473

11. Raiko J.R., Oikonen M., Wendelin-Saarenhovi M., Siitonen N., Kahonen M., Lehtimaki T., Viikari J., Jula A., Loo B.M., Huupponen R., Saarikoski L., Juonala M., Raitakari O.T. Plasminogen activator inhitor-1 associates with cardiovascular risk factors in healthy young adults in the Cardiovascular Risk in Young Finns Study. Atherosclerosis, 2012; 224 (1): 208–212. doi: 10.1016/j.atherosclerosis.2012.06.062

12. Somodi S., Seres I., Lorincz H., Harangi M., Fulop P., Paragh G. Plasminogen activator inhibitor-1 level correlates with lipoprotein subfractions in obese nondiabetic subjects. Int. J. Endocrinol., 2018; 2018: 9596054. doi: 10.1155/2018/9596054

13. Levine J.A., Oleaga C., Eren M., Amaral A.P., Shang M., Lux E., Vaughan D.E. Role of PAI-1 in hepatic steatosis and dyslipidemia. Scientific Reports, 2021; 11 (1): 1–13. doi: 10.1038/s41598-020-79948-x

14. Iida K., Tani S., Atsumi W., Yagi T., Kawauchi K., Matsumoto N., Hirayama A. Association of plasminogen activator inhibitor-1 and low-density lipoprotein heterogeneity as a risk factor of atherosclerotic cardiovascular disease with triglyceride metabolic disorder: a pilot cross-sectional study. Coronary Artery Disease, 2017; 28 (7): 577–587. doi: 10.1097/MCA.0000000000000521

15. Acquarone E., Monacelli F., Borghi R., Nencioni A., Odetti P. Resistin: A reappraisal. Mechanisms of Ageing and Development, 2019; 178: 46–63. doi: 10.1016/j.mad.2019.01.004

16. Tripathi D., Kant S., Pandey S., Ehtesham N.Z. Resistin in metabolism, inflammation, and disease. The FEBS Journal, 2020; 287 (15): 3141–3149. doi: 10.1111/febs.15322

17. Singh A.K., Tiwari S., Gupta A., Natu S.M., Mittal B., Pant A.B. Аssociation of resistin with metabolic syndrome in Indian subjects. Metab. Syndr. Relat. Disord., 2012; 10 (4): 286–291. doi: 10.1089/met.2011.0128

18. Cabrera de Leon A., Almeida Gonzalez D., Gonzalez Hernandez A., Dominguez Coello S., Marrugat J., Juan Aleman Sanchez J., Brito Diaz B., Marcelino Rodriguez I., Perez Mdel C. Relationships between serum resistin and fat intake, serum lipid concentrations and adiposity in the general population. J. Atheroscler. Thromb., 2014; 21 (5): 454–462. doi: 10.5551/jat.22103

19. Melone M., Wilsie L., Palyha O., Strack A., Rashid S. Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/ kexin type 9. J. Am. Coll. Cardiol., 2012; 59 (19): 1697–1705. doi: 10.5551/jat.22103

20. Costandi J., Melone M., Zhao A., Rashid S. Human resistin stimulates hepatic overproduction of atherogenic ApoB-containing lipoprotein particles by enhancing ApoB stability and impairing intracellular insulin signaling. Circ. Res., 2011; 108 (6): 727–742. doi: 10.1161/CIRCRESAHA.110.238949

21. Park H.K., Kwak M.K., Kim H.J., Ahima R.S. Linking resistin, inflammation, and cardiometabolic diseases. The Korean Journal of Internal Medicine, 2017; 32 (2): 239. doi: 10.3904/kjim.2016.229

22. di Pietro N., Formoso G., Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascular Pharmacology, 2016; 84: 1–7. doi: 10.1016/j.vph.2016.05.013

23. Fong L.G., Fong T.A., Cooper A.D. Inhibition of lipopolysaccharide-induced interleukin-1 beta mRNA expression in mouse macrophages by oxidized low density lipoprotein. J. Lipid. Res., 1991; 32: 1899– 1910. doi: 10.1016/S0022-2275(20)41893-0

24. Okumura T., Fujioka Y., Morimoto S., Masai M., Sakoda T., Tsujino T. Chylomicron remnants stimulate release of interleukin-1beta by THP-1 cells. J. Atheroscler. Thromb., 2006; 13: 438–450. doi: 10.5551/jat.13.38

25. Manica-Cattani M.F., Duarte M.M.M.F., Ribeiro E.E., de Oliveira R., da Cruz I.B.M. Effect of the interleukin-1B gene on serum oxidized low-density lipoprotein levels. Clin. Biochem., 2012; 45 (9): 641–645. doi: 10.1016/j.clinbiochem.2012.02.023

26. Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018; 98 (4): 2133–2223. doi: 10.1152/physrev.00063.2017

27. Föger B. Lipid lowering therapy in type 2 diabetes. Wien. Med. Wochenschr., 2011; 161 (11-12): 289–296. doi: 10.1007/s10354-011-0908-4

28. Monnier L., Hanefeld M., Schnell O., Colette C., Owens D. Insulin and atherosclerosis: how are they related? Diabetes & Metabolism, 2013; 39 (2): 111– 117. doi: 10.1016/j.diabet.2013.02.001

29. Aslan I., Kucuksayan E., Aslan M. Effect of insulin analog initiation therapy on LDL/HDL subfraction profile and HDL associated enzymes in type 2 diabetic patients. Lipids in Health and Disease, 2013; 12 (1): 1–11. doi: 10.1186/1476-511X-12-54

30. Chaudhuri A., Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes, Obesity and Metabolism, 2011; 13 (10): 869–879. doi: 10.1111/j.14631326.2011.01423.x

31. Scherer T., Lindtner C., O’Hare J., Hackl M., Zielinski E., Freudenthaler A., Buettner C. Insulin regu- lates hepatic triglyceride secretion and lipid content via signaling in the brain. Diabetes, 2016; 65 (6): 1511–1520. doi: 10.2337/db15-1552

32. Nolan C.J., Ruderman N.B., Kahn S.E., Pedersen O., Prentki, M. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes, 2015; 64 (3): 673–686. doi: 10.2337/db14-0694

33. Izquierdo A.G., Crujeiras A.B., Casanueva F.F., Carreira M.C. Leptin, obesity, and leptin resistance: where are we 25 years later. Nutrients, 2019; 11 (11): 2704. doi: 10.3390/nu11112704

34. Lloyd D.J., McCormick J., Helmering J., Kim K.W., Wang M., Fordstrom P., Vйniant M. M. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48–/–Lepob/ob mice devoid of ApoE or Ldlr. Am. J. Physiol. Endocrinol. Metab., 2008; 294 (3): 496–505. doi: 10.1152/ajpendo.00509.2007

35. Bodary P.F., Gu S., Shen Y., Hasty A.H., Buckler J.M., Eitzman D.T. Recombinant leptin promotes atherosclerosis and thrombosis in apolipoprotein E-deficient mice. Arterioscler., Thrombosis, and Vascular Biol., 2005; 25 (8): 119–122. doi: 10.1161/01.ATV.0000173306.47722.ec

36. Metlakunta A., Huang W., Stefanovic-Racic M., Dedousis N., Sipula I., O’Doherty R.M. Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism. Am. J. Physiol. Endocrinol. Metab., 2017; 312 (1): 11–18. doi: 10.1152/ajpendo.00250.2016

37. Huang W., Metlakunta A., Dedousis N., Ortmeyer H.K., Stefanovic-Racic M., O’Doherty R.M. Leptin augments the acute suppressive effects of insulin on hepatic very low-density lipoprotein production in rats. Endocrinology, 2009; 150 (5): 2169–2174. doi: 10.1210/en.2008-1271

38. Prieur X., Le May C., Magré J., Cariou B. Congenital lipodystrophies and dyslipidemias. Curr. Atheroscler. Rep., 2014; 16 (9); 1–11. doi: 10.1007/s11883-014-0437-x

39. Chong A.Y., Lupsa B.C., Cochran E.K., Gorden P. Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologia, 2010; 53 (1): 27–35. doi: 10.1007/s00125-009-1502-9.

40. Salas-Salvadó J., Díaz-López A., Ruiz-Canela M., Basora J., Fitó M., Corella D., Martínez-González M.Á. Effect of a lifestyle intervention program with energyrestricted Mediterranean diet and exercise on weight loss and cardiovascular risk factors: one-year results of the PREDIMED-Plus trial. Diabetes Care, 2019; 42 (5): 777–788. doi: 10.2337/dc18-0836

41. Sartipy P., Loskutoff D.J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Nat. Acad. Sci., 2003; 100 (12): 7265–7270. doi: 10.1073/pnas.1133870100

42. Sun R.L., Huang C.X., Bao J.L., Jiang J.Y., Zhang B., Zhou S.X., Zhang Y.L. CC-chemokine ligand 2 (CCL2) suppresses high density lipoprotein (HDL) internalization and cholesterol efflux via CCchemokine receptor 2 (CCR2) induction and p42/44 mitogen-activated protein kinase (MAPK) activation in human endothelial cells. J. Biol. Chem., 2016; 291 (37): 19532–19544. doi: 10.1074/jbc.M116.714279

43. Lazarenko V.A., Bobrovskaya E.A., Putintseva E.V., Bondarev G.A. Oxidized low-density lipoproteins before and after reconstructive interventions on the main arteries of the lower extremities. Vestnik Natsionalnogo mediko-khirurgicheskogo tsentra im. N.I. Pirogova, 2015; 10 (1): 14–17. (In Russ.)

44. Autry A.E., Monteggia L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012; 64 (2): 238–258. doi: 10.1124/pr.111.005108

45. Minnone G., de Benedetti F., Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int. J. Mol. Sci., 2017; 18 (5): 1028. doi: 10.3390/ijms18051028

46. Mantyh P.W., Koltzenburg M., Mendell L.M., Tive L., Shelton D.L., Warner D.S. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. The J. Am. Soc. Anesthesiol., 2011; 115 (1): 189–204. doi: 10.1097/ALN.0b013e31821b1ac5

47. Do H.T., Bruelle C., Pham D.D., Jauhiainen M., Eriksson O., Korhonen L.T., Lindholm D. Nerve growth factor (NGF) and pro-NGF increase lowdensity lipoprotein (LDL) receptors in neuronal cells partly by different mechanisms: role of LDL in neurite outgrowth. J. Neurochem., 2016; 136 (2): 306–315. doi: 10.1111/jnc.13397

48. Teplan V., Senolt L., Hulejova H., Stollova M., Gurlich R. Early changes in serum visfatin after abdominal surgery: a new pro-inflammatory marker in diagnosis? Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2014; 159 (3): 489–496. doi: 10.5507/bp.2014.012

49. Kuznetsova L.A., Shpakov A.O. Adipokines and their possible role in obesity and type 2 diabetes mellitus. Saratovskiy nauchno-meditsinskiy zhurnal, 2018; 14 (2): 201–206 (In Russ.)

50. Naz R., Tauqeer S., Bibi Y., Ayub M. Level of visfatin in obese and diabetic Balb/c mice. Pak. J. Physiol., 2017; 13 (3): 36–38. www.pps.org.pk/PJP/13-3/Raeesa.pd

51. Shafeeq N.K. Visfatin PON-1 Levels in Iraqi Hyperthyroidism Patient’s with Dyslipidemia. Indian J. Clin. Biochem., 2019; 34 (1): 101–107. doi: 10.1007/s12291-017-0717-7

52. Bardymova T.P., Berezina M.V., Batunova E.V., Miroshnichenko I.A. Metabolic features of obese patients. Meditsinskii sovet, 2017; 20: 157–159 (In Russ.)

53. Pan X., Kaminga A.C., Wen S.W., Acheampong K., Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis. PLoS One, 2019; 14 (12): e0226292. doi: 10.1093/cvr/cvw016.

54. Lesná J., Tichá A., Hyšpler R., Musil F., Bláha V., Sobotka L., Šmahelová A. Omentin-1 plasma levels and cholesterol metabolism in obese patients with diabetes mellitus type 1: impact of weight reduction. Nutrition & Diabetes, 2015; 5 (11): 183–183. doi: 10.1038/nutd.2015.33

55. Moreno-Navarrete J.M., Catalán V., Ortega F., Gómez-Ambrosi J., Ricart W., Frühbeck G., Fernández-Real J.M. Circulating omentin concentration increases after weight loss. Nutrition & Metabolism, 2010; 7 (1): 1–6. doi: 10.1186/1743-7075-7-27

56. Watanabe K., Watanabe R., Konii H., Shirai R., Sato K., Matsuyama T.A., Ishibashi-Ueda H., Koba S., Kobayashi Y., Hirano T., Watanabe T. Counteractive effects of omentin-1 against atherogenesis. Cardiovasc. Res., 2016; 110 (1): 118–128. doi: 10.1093/cvr/cvw016


Review

For citations:


Spiridonov A.N., Khudiakova A.D., Ragino Yu.I. Adipokines/cytokines and disturbances in lipid metabolism. Ateroscleroz. 2022;18(2):157-164. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-2-157-164

Views: 406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)