Preview

Ateroscleroz

Advanced search

The relationship of cardiovascular disease and metabolic syndrome

Abstract

   Cardiovascular diseases are the leading cause of death and disability in the population. A risk factor for cardiovascular disease, as well as type 2 diabetes, obesity is insulin resistance – the basis of the metabolic syndrome. The article discusses the relationship of cardiovascular disease and metabolic syndrome, also laboratory markers and anthropometric parameters, which can be important indicators of predisposition to metabolic changes associated with the cardiovascular disease risk.

About the Authors

E. N. Vorobyova
Altai State Medical University
Russian Federation

656049

Lenin av., 40

Barnaul



M. L. Fomicheva
Institute of Internal and Preventive Medicine
Russian Federation

630089

Boris Bogatkov str., 175/1

Novosibirsk



R. I. Vorobyov
Sity Hospital № 1
Russian Federation

656049

Peschanaya str., 89–270

Barnaul



E. A. Sharlaeva
Altai State University
Russian Federation

656049

Lenin av., 61

Barnaul



G. G. Sokolova
Altai State University
Russian Federation

656049

Lenin av., 61

Barnaul



D. M. Rudakova
Regional Clinical Hospital
Russian Federation

656024

Lyapidevskiy str., 1

Barnaul



A. A. Efremushkina
Altai State Medical University
Russian Federation

656049

Lenin av., 40

Barnaul



A. S. Kazyzaeva
Altai State Medical University
Russian Federation

656049

Lenin av., 40

Barnaul



References

1. Кухарчук В. В. Дислипидемии и сердечно-сосудистые заболевания / В. В. Кухарчук // Consilium Medicum. – 2009. – Т. 11, № 5. – С. 61–64.

2. Dias R. G., Negrгo C. E., Krieger M. H. Nitric oxide and the cardiovascular system: cell activation, vascular reactivity and genetic variant // Arq. Bras. Cardiol. 2011. Vol. 96, N 1. P. 68–75.

3. Ribeiro F., Alves A. J., Teixeira M. et al. Endothelial function and atherosclerosis: circulatory markers with clinical usefulness // Rev. Port. Cardiol. 2009. Vol. 28, N 10. P. 1121–1151.

4. Teerlink J. R. Endothelins: Pathophysiology and treatment implications in chronic heart failure // Curr. Heart Failure Reports. 2005. Vol. 2. P. 191–197.

5. Schiffrin E. L., Touyz R. M. Vascular biology of endothelin // J. Cardiovasc. Pharmacol. 1998. Vol. 32 (Suppl 3). P. S2–S13.

6. Henry P., Thomas A. F., Benetos et al. Impaired fasting glucose, blood pressure and cardiovascular disease mortality // Hypertension. 2002. Vol. 40. P. 458–463.

7. Boucher J., Masri B., Daviaud D. et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity // Endocrinology. 2005. N 146. P. 1764–1771.

8. Brownlee M. Biochemistry and molecular cell biology of diabetic complications // Nature. 2001. N 414. P. 813–820.

9. Fornoni A., Raij L. Metabolic syndrome and endothelial dysfunction // Curr. Hypertens. Rep. 2005. Vol. 7. P. 88–95.

10. Scherrer U., Sartori C. Defective nitric oxide synthesis: a link between metabolic insulin resistance, sympathetic overactivity and cardiovascular morbidity // Eur. J. Endocrinol. 2000. Vol. 142. P. 315–323.

11. Ferrannini E. Insulin and Blood Pressure: Connected on a Circumference? // Hypertension. 2005. Vol. 45. Р. 347–348.

12. Cohen A. W., Combs T. P., Scherer P. E., Lisanti M. P. Role of caveolin and caveolae in insulin signaling and diabetes // Am. J. Physiol. Endocrinol. Metab. 2003. N 285. P. 1151–1160.

13. Razani B., Woodman S. E., Lisanti M. P. Caveolae: From Cell Biology to Animal Physiology // Pharmacol. Rev. 2002. Vol. 54. P. 431–467.

14. Behrendt D., Ganz P. Endothelial function: from vascular biology to clinical applications // Am. J. Cardiol. 2002. N 90. P. 40–48.

15. Hansson G. K. Inflammation, atherosclerosis, and coronary artery disease // N. Engl. J. Med. 2005. Vol. 352. P. 1685–1695.

16. Libby P., Ridker P. M. Inflammation and atherosclerosis: role of C-Reactive protein in risk assessment // Am. J. Med. 2004. Vol. 116. P. 9–16.

17. Oliveira G. H. Novel serologic markers of cardiovascular risk // Curr. Atheroscler. Rep. 2005. Vol. 7. P. 148–154.

18. Bhakdi S., Torzewski M., Klouche M., Hemmes M. Complement and atherogenesis. Binding of CRP to degraded, nonoxidized LDL enhances complement activation // Arterioscler. Thromb. Vasc. Biol. 1999. N 19. P. 2348–2354.

19. Verma S. C-reactive protein upregulates the nuclear factor-κB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis // J. Thorac. Cardiovasc. Surg. 2003. Vol. 126. P. 1886–1891.

20. Zee R. Y., Ridker P. M. Polymorphism in the human C-reactive protein (CRP) gene, plasma concentrations of CRP, and the risk of future arterial thrombosis // Atherosclerosis. 2002. Vol. 162. P. 217–219.

21. Williams T. N., Zhang C. X., Game B. A. et al. C-Reactive Protein Stimulates MMP-1 Expression in U937 Histiocytes Through FcγRII and Extracellular Signal-Regulated Kinase Pathway. An Implication of CRP Involvement in Plaque Destabilization // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. P. 61–66.

22. Koschinsky M. L. Lipoprotein(a) and atherosclerosis: New perspectives on the mechanism of action of an enigmatic lipoprotein // Curr. Atheroscler. Rep. 2005. Vol. 7. P. 389–395.

23. Lee D. K., Cheng R., Nguyen T., Fan T. et al. Characterization of apelin, the ligand for the APJ receptor // Neurochem. 2000. Vol. 74. P. 34–41.

24. Folino A., Montarolo P. G., Samaja M., Rastaldo R. Effects of apelin on the cardiovascular system // Heart Fail Rev. 2015. Feb 5. [Epub ahead of print].

25. Kleinz M. J., Davenport A. P. Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells // Regul. Pept. 2004. Vol. 118. P. 25–119.

26. Falcгo-Pires I., Leite-Moreira A. F. Apelin: a novel neurohumoral modulator of the cardiovascular system. Pathophysiologic importance and potential use as a therapeutic target // Rev. Port. Cardiol. 2005. Oct. 24 (10). P. 1263–1276.

27. Farkasfalvi K., Stagg M. A., Coppen S. R. et al. Direct effects of apelin on cardiomyocyte contractility and electrophysiology // Biochem. Biophys. Res. Commun. 2007. N 357 (4). P. 889–895.

28. Tatemoto K., Takayama K., Zou M. X. et al. The novel peptide apelin lowres blood pressure via a nitric oxide-dependent mechanism // Regul. Pept. 2001. N 99 (2-3). P. 87–92.

29. Lee D. K., Saldivia V. R., Nguyen T., Cheng R. et аl. Modification of the terminal residue of apelin-13 antagonizes its hypotensive action // Endocrinology. 2005. N 146 (1). P. 231–236.

30. Chandrasekaran B., Dar O., McDonagh T. The role of apelin in cardiovascular function and heart failure // Eur. J. Heart Fail. 2008. N 10. P. 725–732.

31. Chong K. S., Gardner R. S., Morton J. J. et al. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure // Eur. J. Heart Fail. 2006. N 8 (4). P. 355–360.

32. Glassford A. J., Yue P., Sheikh A. Y. et al. HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes // Am. J. Physiol. Endocrinol. Metab. 2007. N 293 (6). Р. 1590–1596.

33. Boucher J. А., Masri B., Le Daviaud D. еt al. Newly Identified Adipokine Up-Regulated by Insulin and Obesity // Apelin. Endocrinol. 2005. N 146 (4). Р. 1764–1771.

34. Soriguer F., Garrido-Sanchez L., Garcia-Serrano S. еt al. Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus // Obesity Surgery. 2009. Vol. 19. P. 1574–1580.

35. Higuchi K., Masaki М., Gotoh K. et al. Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice // Endocrinology. 2007. Vol. 148. P. 2690–2697.

36. Despres J.-P. Abdominal obesity as an important component of insulin resistance syndrome // Nutrition. 1993. N 9. P. 452–459.

37. Guilherme A., Virbasius J. V., Puri V. et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes // Nat. Rev. Mol. Cell. Biol. 2008. Vol. 9, N 5. P. 367– 377.

38. Zeyda M., Wernly B., Demyanets S. et al. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue // Int. J. Obes. (Lond). 2012. N 12. P. 45–53.

39. Trauhurn P., Wood I.S. Signaling role adipose tissue: adipokines and inflammation in obesity // Biochem. Soc. Trans. 2005. N 23. Р. 1078–1081.

40. Itoch M., Suganami T., Hachiya R., Ogawa Y. Adipose Tissue Remodeling as Homeostatic Inflammation // Int. J. Inflam. 2011. Vol. 2011. P. 1–8.

41. Vachharajani V., Granger D. N. Adipose tissue: a motor for the inflammation associated with obesity // IUBMB Life. 2009. V. 61, N 4. P. 424–430.

42. Dray C., Debard C., Jager J. et al. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and human // Am. J. Pysiol. Endocrinal. Metab. 2010. Vol. 298. P. E1161–E1169.

43. Esteve E., Ricart W., Fernandez-Real J. M. Adipocytokines and Insulin Resistance. The possible role of lipocalin-2, retinol binding protein-4, and adiponectin // Diabetes Care. 2009. Vol. 32. P. 362–367.

44. Falcao-Pires I., Castro-Chaves P., Miranda-Silva D. et al. Physiological, pathological and potential therapeutic roles of adipokines // Drug Discovery Today. 2012. Vol. 17. P. 880–889.

45. Galic S., Oakhill J. S., Steinberg G. R. Adipose tissue as an endocrine organ // Mol. Cell. Endocrinol. 2010. Vol. 316. P. 129–139.

46. Gonzalez A., Claria J. Resolution of Adipose Tissue Inflammation // Sci. World J. 2010. Vol. 10. P. 832–856.

47. Kim J. Y., van de Wall E., Laplante M. et al. Obesityassociated improvements in metabolic profile through expansion of adipose tissue // J. Clin. Invest. 2007. Vol. 117, N 9. P. 2621–2637.

48. Tilg H., Moschen A. R. Inflammatory mechanisms in the regulation of insulin resistance // Mol. Med. 2008. V. 14, N 3-4. P. 222–231.

49. Holland W. L., Bikman B. T., Wang L. P. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice // J. Clin. Invest. 2011. Vol. 121. P. 1858–1870.

50. Nguyen M. T., Favelyukis S., Nguyen A.-K. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways // J. Biol. Chem. 2007. Vol. 282. P. 35279–35292.

51. Cancello R., Henegar C., Viguerie N. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss // Diabetes. 2005. N 54. Р. 2277–2286.

52. Kamei N. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance // J. Biol. Chem. 2006. Vol. 281. P. 26602– 26614.

53. Kanda H. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity // J. Clin. Invest. 2006. Vol. 116. P. 1494–1505.

54. Guerre-Millo M. Adipose tissue and adipokines: for better or worse // Diabetes Metab. 2004. Vol. 30. P. 13–19.

55. Kern P. A., Saghizadeh M., Ong J. M. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase // J. Clin. Invest. 1995. Vol. 95. P. 2111–2119.

56. Плохая А. А. Современные аспекты лечения метаболического синдрома А. А. Плохая // Ожирение и метаболизм. – 2011. – № 3. – С. 31–37.

57. Lemieux S., Despres J.-P., Moorjani S. et al. Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue? // Diabetologia. 1994. Vol. 37. P. 757–764.

58. Lonnqvist F., Thorne A., Large V., Arner P. Sex differences in visceral fat lipolysis and metabolic complications of obesity // Arterioscler. Thromb. Vasc. Biol. 1997. Vol. 17. P. 1472–1480.

59. Ben-Noun L., Sohar E., Laor A. Neck circumference as a simple screening measure for identifying overweight and obese patients // Obes Res. 2001. N 9 (8). P. 470.

60. Zhou Jing-ya, Hui Ge, Zhu Ming-fan et al. Neck Circumference as an Independent Predictive Contributor to Cardio-Metabolic Syndrome // Cardiovasc. Diabetol. 2013. Vol. 112 (76).

61. Yang G. R., Yuan S. Y., Fu H. J. et al. Beijing Community Diabetes Study Group // Diabetes Care. 2010. Vol. Nov 33(11). P. 2465–2467.

62. Castan-laurell I., Dray C., Knaufl C. et al. Apelin, a promising target for type 2 diabetes treatment? // Trends in Endocrinology&Metabolism. 2012. Vol. 23, N 5. Р. 234–241.

63. Dray C., Foussal C., Attanй C. et al. Apelin: from cardiac function to energetic metabolism // Sang Thrombose Vaisseaux. 2009. Vol. 21, N 7. P. 233–240.


Review

For citations:


Vorobyova E.N., Fomicheva M.L., Vorobyov R.I., Sharlaeva E.A., Sokolova G.G., Rudakova D.M., Efremushkina A.A., Kazyzaeva A.S. The relationship of cardiovascular disease and metabolic syndrome. Ateroscleroz. 2015;11(2):50-57. (In Russ.)

Views: 300


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)