Risk factors of cardiovascular and chronic non-communicable diseases and 9-year dynamics of cognitive functions in an ageing population
https://doi.org/10.52727/2078-256X-2022-18-1-14-32
Abstract
The aim of the study was to investigate the relationship between the level of risk factors (RF) of cardiovascular diseases (CVD) and chronic non-communicable diseases (NCD) and their changes over 9 years with the dynamics of indicators of cognitive function (CF) in an ageing population.
Material and methods. The study was based on a random population sample of men and women aged 45–69 years old examined at baseline in 2003–2005 (n = 9360, Novosibirsk, HAPIEE project). Present analysis included a subsample of persons with repeated CF measurements (n = 3153). The average follow-up period was 9.2 ± 0.7 years (from 47–74 to 55–84 years). Repeated measurements of RF, history and treatment of CVD and NCDs, indicators of CF (memory, semantic verbal fluency, attention and processing speed) were done. The associations between 9-year regression of CF and the baseline level of RF and their 9-year dynamics were evaluated in linear and logistic regression.
Results. In the studied population sample the extent of 9-year regress of CFs was associated with baseline high level of systolic blood pressure (p = 0.005) and fasting blood glucose (FG) (p = 0.003), low body mass index (BMI) (p = 0.011) in men and smoking (p = 0.037) in women aged 47–74 years old. Regarding the difference between baseline and prospective level of RF in 9 years, the regress of CF was associated with decrease of total cholesterol value (p = 0.027), continued smoking (p = 0.032) in men, decrease of BMI (p = 0.024 and p = 0.012) in women decrease of the average dose of alcohol per session (p = 0.005 and p = 0.014) in women, and increase of the average dose of alcohol in men (p = 0.049). Independent predictors of low prospective value of different CF scores at age of 55–84, were the baseline level of FG above 5.95 mmol/l (p = 0.013 and p = 0.044), the level of BMI equal or lower 24.2 kg/m2 (p = 0.016 and p = 0.023), former smoking (p = 0.007) in men, and non-drinking status in women (p = 0.005 and p = 0.004).
Conclusions. In studied population we identified the associations between modifiable risk factors of CVD and chronic NCD and their changes during 9-year follow-up, and the extent of age-related regress of CF. These findings might have an implication in prevention of cognitive impairment.
About the Authors
S. K. MalyutinaRussian Federation
Sofia K. Malyutina, doctor of medical sciences, professor, laboratory of etiopathogenesis and clinics of internal diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
A. V. Titarenko
Russian Federation
Anastasiia V. Titarenko, graduate student, researcher, laboratory of etiopathogenesis and clinics of internal diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
S. V. Shishkin
Russian Federation
Sergei V. Shishkin, candidate of medical sciences, senior researcher, laboratory of clinical, population and preventive research of therapeutic and endocrine diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
L. V. Shcherbakova
Russian Federation
Lilia V. Shcherbakova, senior researcher, laboratory of clinical, population and preventive research of therapeutic and endocrine diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
E. V. Mazdorova
Russian Federation
Ekaterina V. Mazdorova, candidate of medical sciences, researcher, laboratory of etiopathogenesis and clinics of internal diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
D. V. Denisova
Russian Federation
Diana V. Denisova, doctor of medical sciences, leading researcher, laboratory of preventive medicine
630089, Novosibirsk, Boris Bogatkov str., 175/1
J. A. Hubacek
Czech Republic
Jaroslav A. Hubacek, MD, PhD, Experimental Medicine Centre
14021, Prague, Videnska, 1958/9
M. Bobak
United Kingdom
Martin Bobak, MD, PhD, professor, Institute of Epidemiology and Health Care
Torrington Place, 1-19, WC1E6BT, London
References
1. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388 (10053): 1659–1724. doi: 10.1016/S0140-6736(16)31679-8
2. Yusuf S., Joseph P., Rangarajan S., Islam S., Mente A., Hystad P., Brauer M., Kutty V.R., Gupta R., Wielgosz A., AlHabib K.F., Dans A., LopezJaramillo P., Avezum A., Lanas F., Oguz A., Kruger I.M., Diaz R., Yusoff K., Mony P., Chifamba J., Yeates K., Kelishadi R., Yusufali A., Khatib R., Rahman O., Zatonska K., Iqbal R., Wei L., Bo H., Rosengren A., Kaur M., Mohan V., Lear S.A., Teo K.K., Leong D., O’Donnell M., McKee M., Dagenais G. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet, 2020; 395 (10226): 795–808. doi: 10.1016/S0140-6736(19)32008-2
3. Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization. 2019. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://apps.who.int/iris/bitstream/handle/10665/312180/9789241550543-eng.pdf?ua=1 (13.02.2022).
4. Orgeta V., Mukadam N., Sommerlad A., Livingston G. The Lancet Commission on Dementia Prevention, Intervention, and Care: a call for action. Ir. J. Psychol. Med., 2019; 36 (2): 85–88. doi: 10.1017ipm.2018.4
5. Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Pikhart H., Nicholson A., Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health, 2006; 6: 255. doi: 10.1186/1471-2458-6-255
6. Rehm J. Measuring quantity, frequency, and volume of drinking. Alcohol. Clin. Exp. Res., 1998; 22 (2 Suppl): 4S–14S. doi: 10.1097/00000374-199802001-00002
7. Bobak M., Richards M., Malyutina S., Kubinova R., Peasey A., Pikhart H., Shishkin S., Nikitin Y., Marmot M. Association between Year of Birth and Cognitive Functions in Russia and the Czech Republic: Cross-Sectional Results of the HAPIEE Study. Neuroepidemiology, 2009; 33 (3): 231–239. doi: 10.1159/000229777
8. Titarenko A.V., Shishkin S.V., Shcherbakova L.V., Verevkin E.G., Hubacek J., Bobak M., Malyutina S.K. The relationship between dynamics of indicators of cognitive functions and status of economic activity in population with aging. Profilakticheskaya meditsina, 2020; 23 (3): 27–34. (In Russ.) doi: 10.17116/profmed20202303127.
9. Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., Kahan T., Mahfoud F., Redon J., Ruilope L., Zanchetti A., Kerins M., Kjeldsen S.E., Kreutz R., Laurent S., Lip G.Y.H., McManus R., Narkiewicz K., Ruschitzka F., Schmieder R.E., Shlyakhto E., Tsioufis C., Aboyans V., Desormais I.; ESC Scientific Document Group. The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J., 2018; 39 (33): 3021–3104. doi: 10.1093/eurheartj/ehy339
10. Rose G.A., Blackburn H., Gillum R.F., Prineas R.J. Cardiovascular Survey Methods. 2nd ed. Cardiovascular Survey Methods, 2nd ed.; WHO: Geneva, 1984. 223 p.
11. World Health Organization & International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation. 2006. World Health Organization. ISBN 9241594934. Available at: https://apps.who.int/iris/handle/10665/43588 (13.02.2022).
12. SPSS 13.0 Base User’s Guide. Chicago, IL: SPSS Inc. 2004. ISBN 0-13-185 723-1
13. Köhler S., Baars M.A., Spauwen P., Schievink S., Verhey F.R., van Boxtel M.J. Temporal evolution of cognitive changes in incident hypertension: Prospective cohort study across the adult age span. Hypertension, 2014; 63 (2): 245–251. doi: 10.1161/HYPERTENSIONAHA.113.02096
14. Arntzen K.A., Schirmer H., Wilsgaard T., Mathiesen E.B. Impact of cardiovascular risk factors on cognitive function: The Tromso study. Eur. J. Neurol., 2011; 18 (5): 737–743. doi: 10.1111/j.1468-1331.2010.03263.x
15. Forte G., Casagrande M. Effects of Blood Pressure on Cognitive Performance in Aging: A Systematic Review. Brain Sci., 2020; 10 (12): 919. doi: 10.3390/brainsci10120919
16. Levine D.A., Galecki A.T., Langa K.M., Unverzagt F.W., Kabeto M.U., Giordani B., Cushman M., McClure L.A., Safford M.M., Wadley V.G. Blood Pressure and Cognitive Decline Over 8 Years in Middle-Aged and Older Black and White Americans. Hypertension, 2019; 73 (2): 310–318. doi: 10.1161/HYPERTENSIONAHA.118.12062
17. Dregan A., Stewart R., Gulliford M.C. Cardiovascular risk factors and cognitive decline in adults aged 50 and over: a population-based cohort study. Age Ageing., 2013; 42 (3): 338–345. doi: 10.1093/ageing/afs166
18. Anstey K.J., von Sanden C., Salim A., O’Kearney R. Smoking as a Risk Factor for Dementia and Cognitive Decline: A Meta-Analysis of Prospective Studies. Am. J. Epidemiol., 2007; 166 (4): 367–378. doi: 10.1093/aje/kwm116
19. Nooyens A.C., van Gelder B.M., Verschuren W.M. Smoking and cognitive decline among middle-aged men and women: the Doetinchem Cohort Study. Am. J. Public. Health., 2008; 98 (12): 2244–2250. doi: 10.2105/AJPH.2007.130294
20. Hill R.D., Nilsson L.G., Nyberg L., Bäckman L. Cigarette smoking and cognitive performance in healthy Swedish adults. Age Ageing., 2003; 32 (5): 548–550. doi: 10.1093/ageing/afg067
21. Richards M., Jarvis M.J., Thompson N., Wadsworth M.E. Cigarette smoking and cognitive decline in midlife: evidence from a prospective birth cohort study. Am. J. Public. Health., 2003; 93 (6): 994–998. doi: 10.2105/ajph.93.6.994
22. Amini R., Sahli M., Ganai S. Cigarette smoking and cognitive function among older adults living in the community. Neuropsychol Dev. Cogn. B. Aging. Neuropsychol. Cogn., 2021; 28 (4): 616–631. doi: 10.1080/13825585.2020.1806199
23. Sabia S., Elbaz A., Dugravot A., Head J., Shipley M., Hagger-Johnson G., Kivimaki M., Singh-Manoux A. Impact of smoking on cognitive decline in early old age: the Whitehall II cohort study. Arch. Gen. Psychiatry., 2012; 69 (6): 627–635. doi: 10.1001/archgenpsychiatry.2011.2016
24. Zhou Y., Zhang T., Lee D., Yang L., Li S. Body mass index across adult life and cognitive function in the American elderly. Aging (Albany NY), 2020; 12 (10): 9344–9353. doi: 10.18632/aging.103209
25. Kim G., Choi S., Lyu J. Body mass index and trajectories of cognitive decline among older Korean adults. Aging Ment Health., 2020; 24 (5): 758–764. doi: 10.1080/13607863.2018.1550628
26. Fitzpatrick A.L., Kuller L.H., Lopez O.L., Diehr P., O’Meara E.S., Longstreth W.T.Jr., Luchsinger J.A. Midlife and Late-Life Obesity and the Risk of Dementia: Cardiovascular Health Study. Arch. Neurol., 2009; 66 (3): 336–342. doi: 10.1001/archneurol.2008.582
27. Arvanitakis Z., Capuano A.W., Bennett D.A., Barnes L.L. Body Mass Index and Decline in Cognitive Function in Older Black and White Persons. J. Gerontol. A. Biol. Sci. Med. Sci., 2018; 73 (2): 198–203. doi: 10.1093/gerona/glx152
28. Qizilbash N., Gregson J., Johnson M.E., Pearce N., Douglas I., Wing K., Evans S.J.W., Pocock S.J. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol., 2015; 3 (6): 431–436. doi: 10.1016/S2213-8587(15)00033-9
29. Liu H., Zou L., Zhou R., Zhang M., Gu S., Zheng J., Hukportie D.N., Wu K., Huang Z., Yuan Z., Wu X. Long-Term Increase in Cholesterol Is Associated With Better Cognitive Function: Evidence From a Longitudinal Study. Front. Aging Neurosci., 2021; 13: 691423. doi: 10.3389/fnagi.2021.691423
30. van Vliet P. Cholesterol and late-life cognitive decline. J. Alzheimers Dis., 2012; 30 (Suppl 2): S147– S162. doi: 10.3233/JAD-2011-111028
31. van den Kommer T.N., Dik M.G., Comijs H.C., Fassbender K., Lütjohann D., Jonker C. Total cholesterol and oxysterols: early markers for cognitive decline in elderly? Neurobiol Aging., 2009; 30 (4): 534–545. doi: 10.1016/j.neurobiolaging.2007.08.005
32. Solomon A., Kåreholt I., Ngandu T., Winblad B., Nissinen A., Tuomilehto J., Soininen H., Kivipelto M. Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology., 2007; 68 (10): 751–756. doi: 10.1212/01.wnl.0000256368.57375.b7
33. Kerti L., Witte A.V., Winkler A., Grittner U., Rujescu D., Flöel A. Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology., 2013; 81 (20): 1746–1752. doi: 10.1212/01.wnl.0000435561.00234.ee
34. Crane P.K., Walker R., Hubbard R.A., Li G., Nathan D.M., Zheng H., Haneuse S., Craft S., Montine T.J., Kahn S.E., McCormick W., McCurry S.M., Bowen J.D., Larson E.B. Glucose levels and risk of dementia. N. Engl. J. Med., 2013; 369 (6): 540–548. doi: 10.1056/NEJMoa1215740
35. Wang F., Luo J., Ding D., Zhao Q., Guo Q., Liang X., Zhou F., Deng W., Hong Z. Elevated Fasting Blood Glucose Level Increases the Risk of Cognitive Decline Among Older Adults with Diabetes Mellitus: The Shanghai Aging Study. J. Alzheimers Dis., 2019; 67 (4): 1255–1265. doi: 10.3233/JAD-180662
36. Zheng F., Yan L., Yang Z., Zhong B., Xie W. HbA1c, diabetes and cognitive decline: the English Longitudinal Study of Ageing. Diabetologia, 2018; 61 (4): 839–848. doi: 10.1007/s00125-017-4541-7
37. Stampfer M.J., Kang J.H., Chen J., Cherry R., Grodstein F. Effects of moderate alcohol consumption on cognitive function in women. N. Engl. J. Med., 2005; 352 (3): 245–253. doi: 10.1056/NEJMoa041152
38. Horvat P., Richards M., Kubinova R., Pajak A., Malyutina S., Shishkin S., Pikhart H., Peasey A., Marmot M.G., Singh-Manoux A., Bobak M. Alcohol consumption, drinking patterns, and cognitive function in older Eastern European adults. Neurology, 2015; 84 (3): 287–295. doi: 10.1212/WNL.0000000000001164
39. Zhang R., Shen L., Miles T., Shen Y., Cordero J., Qi Y., Liang L., Li C. Association of Low to Moderate Alcohol Drinking With Cognitive Functions From Middle to Older Age Among US Adults. JAMA Netw Open., 2020; 3 (6): e207922. doi: 10.1001/jamanetworkopen.2020.7922
40. Topiwala A., Allan C.L., Valkanova V., Zsoldos E., Filippini N., Sexton C., Mahmood A., Fooks P., Singh-Manoux A., Mackay C.E., Kivimäki M., Ebmeier K.P. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. BMJ, 2017; 357: j2353. doi: 10.1136/bmj.j2353
41. Kumari M., Holmes M.V., Dale C.E., Hubacek J.A., Palmer T.M., Pikhart H., Peasey A., Britton A., Horvat P., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Shankar A., Singh-Manoux A., Voevoda M., Kivimaki M., Hingorani A.D., Marmot M.G., Casas J.P., Bobak M. Alcohol consumption and cognitive performance: a Mendelian randomization study. Addiction, 2014; 109 (9): 1462–1471. doi: 10.1111/add.12568
42. Wiegmann C., Mick I., Brandl E.J., Heinz A., Gutwinski S. Alcohol and Dementia – What is the Link? A Systematic Review. Neuropsychiatr Dis. Treat., 2020; 16: 87–99. Published 2020 Jan 9. doi: 10.2147/NDT.S198772
43. Brennan S.E., McDonald S., Page M.J., Reid J., Ward S., Forbes A.B., McKenzie J.E. Long-term effects of alcohol consumption on cognitive function: a systematic review and dose-response analysis of evidence published between 2007 and 2018. Syst Rev., 2020; 9 (1): 33. doi: 10.1186/s13643-019-1220-4
Review
For citations:
Malyutina S.K., Titarenko A.V., Shishkin S.V., Shcherbakova L.V., Mazdorova E.V., Denisova D.V., Hubacek J.A., Bobak M. Risk factors of cardiovascular and chronic non-communicable diseases and 9-year dynamics of cognitive functions in an ageing population. Ateroscleroz. 2022;18(1):14-32. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-1-14-32