Proinflammatory adipokines and cytokines in abdominal obesity as a factor in the development of atherosclerosis and renal pathology
https://doi.org/10.52727/2078-256X-2021-17-4-101-110
Abstract
In recent decades, there has been an increase in the prevalence of overweight and obesity. Obesity has become an underestimated pandemic and a public health threat around the world. Adipose tissue is positioned as an endocrine organ that secretes a wide range of pro-inflammatory cytokines and adipokines, inducing a state of chronic subinflammation. The results of epidemiological studies over the past 30 years have also shown that visceral adipose tissue is an independent risk factor for the development of atherosclerosis, cardiometabolic diseases and chronic kidney disease. We performed a systematic review to summarize important aspects of the state of chronic subinflammation in the context of its effect on the decrease in glomerular filtration rate and the development of chronic kidney disease. The review deals with the etiology and pathogenesis of obesity, the hormonal profile of adipose tissue, the molecular mechanisms of the effect of pro-inflammatory cytokines and adipokines on the kidneys, and the pathophysiology of renal diseases. Information on the topic from publications based on the Pubmed database has been used.
Keywords
About the Authors
E. A. RyabovaRussian Federation
Ekaterina A. Ryabova, 1-year resident in the specialty «Therapy»
630089, Novosibirsk, Boris Bogatkov str., 175/1
I. Y. Ragino
Russian Federation
Yulia I. Ragino, RAS corresponding member, doctor of medical sciences, professor, head of the RIIPM – Branch ICG SB RAS of Internal and Preventive Medicine – Branch of the Federal State Budgetary Institution of Science Federal Research
630089, Novosibirsk, Boris Bogatkov str., 175/1
References
1. Magalhães D.S.C., Pedro J.M.P., Souteiro P.E.B., Neves J.S., Castro-Oliveira S., Bettencourt-Silva R., Costa M.M., Varela A., Queirós J., Freitas P., Carvalho D. Analyzing the impact of bariatric surgery in kidney function: a 2-year observational study. Obes. Surg., 2019; 29 (1): 197–206. doi:10.1007/s11695-018-3508-1
2. Abella V., Scotece M., Conde J., Pino J., GonzalezGay M.A., Gómez-Reino J.J., Mera A., Lago F., Gomez R., Gualillo O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol., 2017, 13: 100–109. doi:10.1038/nrrheum.2016.209
3. Mihalopoulos N.L., Yap J.T., Beardmore B., Holubkov R., Nanjee M.N., Hoffman J.M. Cold-activated brown adipose tissue is associated with less cardiometabolic dysfunction in young adults with obesity. Obesity, 2020; 28: 916–923. doi:10.1002/oby.22767
4. Neeland I., Ross R., Després J.-P., Matsuzawa Y., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., Cuevas A., Hu F.B., Griffin B., Zambon A., Barter P., Fruchart J.-C., Eckel R.H. International atherosclerosis society; International chair on cardiometabolic risk working group on visceral obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol., 2019; 7 (9): 715–725. doi:10.1016/S2213-8587(19)30084-1
5. Câmara N.O.S., Iseki K., Kramer H., Sharma Z.-H.-L., Sharma K. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nature Reviews. Nephrology, 2017; 13 (3): 181–190. doi:10.1038/nrneph.2016.191
6. The GBD 2015 obesity collaborators: Afshin A., Forouzanfar M.H., Reitsma M.B., Sur P., Estep K., Lee A., Marczak L., Mokdad A.H., Moradi-Lakeh M., Naghavi M., Salama J.S., Vos T., Abate K.H., Abbafati C., Ahmed M.B., Al-Aly Z., Alkerwi A., AlRaddadi R., Amare A.T., Amberbir A., Amegah A.K., Amini E., Amrock S.M., Anjana R.M., Ärnlöv J., Asayesh H., Banerjee A., Barac A., Baye E., Bennett D.A., Beyene A.S., Biadgilign S., Biryukov S., Bjertness E., Boneya D.J., Campos-Nonato I., Carrero J.J., Cecilio P., Cercy K., Ciobanu L.J., Cornaby L., Damtew S.A., Dandona L., Dandona R., Dharmaratne S.D., Duncan B.B., Eshrati B., Esteghamati A., Feigin V.L., Fernandes J.S., Fürst T., Gebrehiwot T., Gold A., Gona P.N., Goto A., Habtewold D.T., Hadush K.T., Hafezi-Nejad N., Hay S.I., Horino M., Islami F., Kamal R., Kasaeian A., Katikireddi S.V., Kengne A.P., Kesavachandran C.N., Khader Y.S., Khang Y.-H., Khubchandani J., Kim D., Kim Y.J., Kinfu Y., Kosen S., Ku T., Defo B.K., Kumar G.A., Larson H.J., Leinsalu M., Liang X., Lim S.S., Liu P., Lopez A.D., Lozano R., Majeed A., Malekzadeh R., Malta D.C., Mazidi M., McAlinden C., McGarvey S.T., Mengistu D.T., Mensah G.A., Mensink G.B.M., Mezgebe H.B., Mirrakhimov E.M., Mueller U.O., Noubiap J.J., Obermeyer C.M., Ogbo F.A., Owolabi M.O., Patton J.C., Pourmalek F., Qorbani M., Rafay A., Rai R.K., Ranabhat C.L., Reinig N., Safiri S., Salomon J.A., Sanabria J.R., Santos I.S., Sartorius B., Sawhney M., Schmidhuber J., Schutte A.E., Schmidt M.I., Sepanlou S.G., Shamsizadeh M., Sheikhbahaei S., Shin M.-J., Shiri R., Shiue I., Roba H.S., Silva D.A.S., Silverberg J.I., Singh J.A., Stranges S., Swaminathan S., Tabarés-Seisdedos R., Tadese F., Tedla B.A., Tegegne B.S., Terkawi A.S., Thakur J.S., Tonelli M., ToporMadry R., Tyrovolas S., Ukwaja K.N., Uthman O.A., Vaezghasemi M., Vasankari T., Vlassov V.V., Vollset S.E., Weiderpass E., Werdecker A., Wesana J., Westerman R., Yano Y., Yonemoto N., Yonga G., Zaidi Z., Zenebe Z.M., Zipkin B., Murray C.J.L. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med., 2017; 377 (1): 13–27. doi:10.1056/NEJMoa1614362
7. Zorena K., Jachimowicz-Duda O., Slezak D., Robakowska M., Mrugacz M. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int. J. Mol. Sci., 2020; 21: 3570. doi:10.3390/ijms21103570
8. Hetta H.F., Ez-Eldeen M.E., Mohamed G.A., Gaber M.A., ElBadre H.M., Ahmed E.A., Abdellatief R.B., Abd-ElBaky R.M., Elkady A., Nafee A.M. Visfatin serum levels in obese type 2 diabetic patients: relation to proinflammatory cytokines and insulin resistance. Egypt J. Immunol., 2018; 25: 141–151. pmid:30600957
9. Fruhbeck G., Kiortsis D.N., Catalan V. Precision medicine: diagnosis and management of obesity. Lancet Diabetes Endocrinol., 2017; 6: 164–166. doi:10.1016/j.mce.2017.04.009
10. Thyagarajan B., Foster M.T. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Hormone Mol. Biol. and Clin. Investigat., 2017; 16. doi:10.1515/hmbci-2017-0016
11. Pahlavani M., Kalupahana N.S., Ramalingam L., Moustaid-Moussa N. Regulation and functions of the renin-angiotensin system in white and brown adipose tissue. Comprehensive Physiol., 2017; 7: 1137–1150. doi:10.1002/cphy.c160031
12. Feijóo-Bandín S., Aragón-Herrera A., MorañaFernández S., Anido-Varela L., Tarazón E., Roselló-Lletí E., Portolés M., Moscoso I., Gualillo O., González-Juanatey J.R., Lago F. Adipokines and inflammation: focus on cardiovascular diseases. Int. J. Mol. Sci., 2020; 21: 7711. doi:10.3390/ijms21207711
13. Horimatsu T., Kim H.W., Weintraub N.L. The role of perivascular adipose tissue in non-atherosclerotic vascular disease. Front. Physiol., 2017; 8: 969. doi:10.3389/fphys.2017.00969
14. Francisco V., Pino J., Gonzalez-Gay M.A., Mera A., Lago F., Gómez R., Mobasheri A., Gualillo O. Adipokines and inflammation: is it a question of weight? British J. of Pharmacol., 2018; 175: 1569–1579. doi:10.1111/bph.14181
15. Ding Y., Xian X., Holland W.L., Tsai S., Herz J. Low-density lipoprotein receptor-related protein-1 protects against hepatic insulin resistance and hepatic steatosis. EBioMedicine, 2016; 7: 135–145. doi:10.1016/j.ebiom.2016.04.002
16. Rebecchi F., Allaix M.E., Patti M.G., Schlottmann F., Morino M. Gastroesophageal reflux disease and morbid obesity: to sleeve or not to sleeve? World J. Gastroenterol., 2017; 23 (13): 2269–2275. doi:10.3748/wjg.v23.i13.2269
17. Villarroya F., Cereijo R., Gavaldà-Navarro A., Villarroya J., Giralt M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J. Intern. Med., 2018; 284: 492–504. doi:10.1111/joim.12803
18. Rodriguez A., Becerril S., Ezquerro S., MendezGimenez L., Fruhbeck G. Cross-talk between adipokines and myokines in fat browning. Acta Physiol., 2017; 219: 362–381. doi:10.1111/apha.12686
19. Bateman A., Cheung S.T., Bennett H.P.J. A brief overview of progranulin in health and disease. Methods in Mol. Biol., 2018. doi:10.1007/978-1-4939-8559-3_1
20. Favre G., Anty R., Canivet C. Determinants associated with the correction of glomerular hyper-filtration one year after bariatric surgery. Surg. Obes. Relat. Dis., 2017; 13 (10): 1760–1766. doi:10.1016/j.soard.2017.07.018
21. Abella V., Pino J., Scotece M., Conde J., Lago F., Gonzalez-Gay M.A. Progranulin as a biomarker and potential therapeutic agent. Drug Discov. Today, 2017; 22: 1557–1564. doi:10.1016/j.drudis.2017.06.006
22. Cebeci E., Çakan C., Gursu M., Uzun S., Karada G.S., Kolda S.M., Çalhan T., Helvaci S.A., Öztürk S. The main determinants of serum resistin level in type 2 diabetic patients are renal function and inflammation not presence of microvascular complication, obesity and insulin resistance. Exp. Clin. Endocrinol. Diabetes, 2018; 127: 189–194. doi:10.1055/s-0043-121262
23. Lynch M., Ahern T., Sweeney C.M., Malara A., Tobin A.M., O’Shea D., Kirby B. Adipokines, psoriasis, systemic inflammation, and endothelial dysfunction. Int. J. Dermatol., 2017; 56 (11): 1103–1118. doi:10.1111/ijd.13699
24. Davis F.M., Gallagher K.A. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler. Thromb. Vasc. Biol., 2019; 39 (4): 623–634. doi:10.1161/ATVBAHA.118.312135
25. Konaniah E.S., Kuhel D.G., Basford J.E., Weintraub N.L., Hui D.Y. Deficiency of LRP1 in mature adipocytes promotes diet-induced inflammation and atherosclerosis–brief report. Arteriosclerosis, Thrombosis, and Vascular. Biol., 2017; 37 (6): 1046–1049. doi:10.1161/ATVBAHA.117.309414
26. Recinella L., Orlando G., Ferrante C., Chiavaroli A., Brunetti L. Leone S. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol., 2020; 11. doi:10.3389/fphys.2020.578966
27. Djudjaja S., Boora P. Cellular and molecular mechanisms of kidney fibrosis. Mol. Aspects of Medicine, 2018; 6. doi:10.1016/j.mam.2018.06.002
28. Lu C.-C., Wang G.-H., Lu J., Chen P.-P., Zhang Y., Hu Z.-B., Ma K.-L. Role of podocyte injury in glomerulosclerosis. Renal Fibrosis: Mechanisms and Therapies, Adv. Exp. Med. Biol., 2019; 1165: 195–232. doi:10.1007/978-981-13-8871-2_10
29. Dumas D.L.R.C. Actualite´ sur les me´ canismes physiopathologiques des syndromes ne´phrotiques idiopathiques: le´ sions glome´ rulaires minimes et hyalinose segmentaire et focale. Ne´phrol. Ther., 2018; 14 (7). doi:10.1016/j.nephro.2018.06.001
30. Rayego-Mateos S., Valdivielso J.M. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opinion on Therapeutic Targets, 2020. doi:10.1080/14728222.2020.1762173
31. Nogueira A., Pires M.J., Oliviera P.A. Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In vivo, 2017; 31: 1–22. doi:10.21873/invivo.11019
32. Wakamatsu K., Seki Y., Kasama K., Uno K., Hashimoto K., Seto Y., Kurokawa Y. Prevalence of chronic kidney disease in morbidly obese Japanese and the impact of bariatric surgery on disease progression. Obesity Surgery, 2017. doi:10.1007/s11695-017-2863-7
33. Favre G. Longitudinal assessment of renal function in native kidney after bariatric surgery. Surgery for Obesity and Related Diseases, 2018. doi:10.1016/j.soard.2018.05.013
34. Park H.K., Kwak M.K., Kim H.J., Ahima R.S. Linking resistin, inflammation, and cardiometabolic diseases. Korean J. Intern. Med., 2017; 32: 239–247. doi:10.3904/kjim.2016.229
35. Andrade-Oliveira V., Foresto-Neto O., Watanabe I.K.M. Inflammation in renal diseases: new and old players. Front. Pharmacol., 2019; 10: 1192. doi:10.3389/fphar.2019.01192
36. Zeng L.F., Xiao Y., Sun L. A glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy. Adv. Exp. Med. Biol., 2019; 1165: 49–79. doi:10.1007/978-981-13-8871-2_4
37. Chang A.R., Grams M.E., Navaneethan S.D. Bariatric surgery and kidney-related outcomes. Kidney Int. Rep., 2017; 2 (2): 261–270. doi:10.1016/j.ekir.2017.01.010
38. Orellana J.M., Kampe K., Schulze F., Sieber J., Jehle A.W. Fetuin-A aggravates lipotoxicity in podocytes via interleukin-1 signaling. Physiol. Rep., 2017; 5. doi:10.14814/phy2.13287
39. Wilson P.C., Kashgarian M., Moeckel G. Interstitial inflammation and interstitial fibrosis and tubular atrophy predict renal survival in lupus nephritis. Clin. Kidney J., 2018; 11 (2): 207–218. doi: 10.1093/ckj/sfx093
40. Gu Y.-Y., Liu X.-S., Huang X.-R., Yu X.-Q., Lan H.-Y. TGF-β in renal fibrosis: triumphs and challenges. Future Med. Chem., 2020; 12 (9): 853–866. doi:10.4155/fmc-2020-0005
41. Choi S.Y., Lim S.W., Salimi S., Yoo E.J., LeeKwon W., Lee H.H. Tonicity-responsive enhancerbinding protein mediates hyperglycemia-induced inflammation and vascular and renal injury. J. Am. Soc. Nephrol., 2018; 29: 492–504. doi:10.1681/ASN.2017070718
42. Nosalski R., Guzik T.J. Perivascular adipose tissue inflammation in vascular disease. British J. Pharmacol., 2017; 174: 3496–3513. doi:10.1111/bph.13705
43. Nehus E. Obesity and chronic kidney disease. Curr. Opin. Pediatr., 2018; 30. doi:10.1097/MOP.0000000000000586
44. Mehta N., Gava A.L., Zhang D. Follistatin protects against glomerular mesangial cell apoptosis and oxidative stress to ameliorate chronic kidney disease. Antioxid Redox Signal, 2019; 31: 551–571. doi:10.1089/ars.2018.7684
45. Gaillard M., Tranchart H., Beaudreuil S., Lebrun A., Voican C.S., Lainas P., Courie R., Perlemuter G., Parier B., Hammoudi Y., Durrbach A., Dagher I. Laparoscopic sleeve gastrectomy for morbid obesity in renal transplantation candidates: a matched case–control study. Transplant International, 2020; 33: 1061– 1070. doi:10.1111/tri.13637
46. Aggarwal H.K., Jain D., Chauda R., Bhatia S., Sehgal R. Assessment of malnutrition inflammation score in different stages of chronic kidney disease. Pril. (Makedon. Akad. Nauk. Umet. Odd. Med. Nauk.), 2018; 39: 51–61. doi:10.2478/prilozi-2018-0042
47. Lin Y.-C., Lai Y.-J., Lin Y.-C., Peng C.-C., Chen K.- C., Chuang M.-T., Wu M.-S., Chang T.-H. Effect of weight loss on the estimated glomerular filtration rates of obese patients at risk of chronic kidney disease: the RIGOR-TMU study. J. Cachexia, Sarcopenia and Muscle, 2019. doi:10.1002/jcsm.12423
48. Liu M., Ning X., Li R. Signalling pathways involved in hypoxia-induced renal fibrosis. J. Cell. Mol. Med., 2017; 21 (7): 1248–1259. doi:10.1111/jcmm.13060
Review
For citations:
Ryabova E.A., Ragino I.Y. Proinflammatory adipokines and cytokines in abdominal obesity as a factor in the development of atherosclerosis and renal pathology. Ateroscleroz. 2021;17(4):101-110. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-4-101-110