Preview

Ateroscleroz

Advanced search

Sphingolipids in ischemic stroke

https://doi.org/10.52727/2078-256X-2021-17-4-93-100

Abstract

Determination of new biomarkers involved in the pathogenesis of ischemic stroke is an extremely important task from the point of view of identifying possible mechanisms for preventing the occurrence of an acute event, better diagnosis, and influencing the stages of pathogenesis to reduce the inflammatory focus. Sphingolipids belong to new biomarkers of atherosclerosis, which are involved in inflammation, apoptosis, and ischemia. The widespread introduction of mass spectrometry has made it possible to study sphingolipids in more detail. This review aims to summarize the available data on the role of sphingolipids in ischemic stroke.

About the Author

A. A. Rogozhina
Central State Medical Academy of Department of Presidential Affairs; City Clinical Hospital
Russian Federation

Anastasia A. Rogozhina, postgraduate student of the department of therapy, cardiology and functional diagnostics of the Central State Medical Academy of Department of Presidential Affairs; doctor of general medicine in the City Clinical Hospital № 51

121359, Moscow, Marchal Timoshenko, 19, s. 1A
121309, Moscow, Alyab’eva str., 7/33



References

1. Pettus B.J., Chalfant C.E., Hannun Y.A. Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta, 2002; 1585 (2-3): 114–125. doi:10.1016/s1388-1981(02)00331-1

2. Mohamud Y.A., Hagemann N., Hermann D.M. The acid sphingomyelinase/ceramide system as target for ischemic stroke therapies. Neurosignals, 2019; 27 (S1): 32–43. doi:10.33594/000000184

3. Алесенко А.В., Затейщиков Д.А., Лебедев А.Т., Курочкин И.Н. Участие сфинголипидов в патогенезе атеросклероза. Кардиология, 2019; 59 (8): 77–87.

4. Hannun Y.A., Obeid L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature reviews. Mol. Cell Biol., 2008; 9 (2): 139–150. doi:10.1038/nrm2329

5. Manicke N.E., Nefliu M., Wu C., Woods J.W., Reiser V., Hendrickson R.C., Cooks R.G. Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem., 2009; 81 (21): 8702–8707. doi:10.1021/ac901739s

6. Brunkhorst R., Friedlaender F., Ferreirós N., Schwalm S., Koch A., Grammatikos G., Toennes S., Foerch C., Pfeilschifter J., Pfeilschifter W. Alterations of the ceramide metabolism in the peri-infarct cortex are independent of the sphingomyelinase pathway and not influenced by the acid sphingomyelinase inhibitor fluoxetine. Neural Plasticity, 2015; 2015: 503079. doi:10.1155/2015/503079

7. Abe T., Niizuma K., Kanoke A., Saigusa D., Saito R., Uruno A., Fujimura M., Yamamoto M., Tominaga T. Metabolomic analysis of mouse brain after a transient middle cerebral artery occlusion by mass spectrometry imaging. Neurol. Medico-Chirur., 2018; 58 (9): 384–392. doi:10.2176/nmc.oa.2018-0054

8. Henderson F., Hart P.J., Pradillo J.M., Kassiou M., Christie L., Williams K.J., Boutin H., McMahon A. Multi-modal imaging of long-term recovery poststroke by positron emission tomography and matrixassisted laser desorption/ionisation mass spectrometry. Rapid Commun. Mass Spectrom., 2018; 32 (9): 721–729. doi:10.1002/rcm.8090

9. Nielsen M.M., Lambertsen K.L., Clausen B.H., Meyer M., Bhandari D.R., Larsen S.T., Poulsen S.S., Spengler B., Janfelt C., Hansen H.S. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci. Rep., 2016; 6: 39571. doi:10.1038/srep39571

10. Le Stunff H., Milstien S., Spiegel S. Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell. Biochem., 2004; 92 (5): 882–899. doi:10.1002/jcb.20097

11. Urtz N., Gaertner F., von Bruehl M.L., Chandraratne S., Rahimi F., Zhang L., Orban M., Barocke V., Beil J., Schubert I., Lorenz M., Legate K.R., Huwiler A., Pfeilschifter J.M., Beerli C., Ledieu D., Persohn E., Billich A., Baumruker T., Mederos y Schnitzler M., Massberg S. Sphingosine 1-phosphate produced by sphingosine kinase 2 intrinsically controls platelet aggregation in vitro and in vivo. Circ. Res., 2015; 117 (4): 376–387. doi:10.1161/circresaha.115.306901

12. Okajima F. Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim. Biophys. Acta, 2002; 1582 (1-3): 132–137. doi:10.1016/s1388-1981(02)00147-6

13. Kurano M., Yatomi Y. Sphingosine 1-phosphate and atherosclerosis. J. Atheroscler. Thromb., 2018; 25 (1): 16–26. doi:10.5551/jat.RV17010

14. Kimura T., Sato K., Malchinkhuu E., Tomura H., Tamama K., Kuwabara A., Murakami M., Okajima F. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler. Thromb. Vasc. Biol., 2003; 23 (7): 1283–1288. doi:10.1161/01.atv.0000079011.67194.5a

15. Nofer J.R., van der Giet M., Tölle M., Wolinska I., von Wnuck Lipinski K., Baba H.A., Tietge U.J., Gödecke A., Ishii I., Kleuser B., Schäfers M., Fobker M., Zidek W., Assmann G., Chun J., Levkau B. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest., 2004; 113 (4): 569–581. doi:10.1172/jci18004

16. Kimura T., Tomura H., Mogi C., Kuwabara A., Damirin A., Ishizuka T., Sekiguchi A., Ishiwara M., Im D.S., Sato K., Murakami M., Okajima F. Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoproteininduced inhibition of adhesion molecule expression in endothelial cells. J. Biol. Chem., 2006; 281 (49): 37457–37467. doi:10.1074/jbc.M605823200

17. Ruiz M., Frej C., Holmer A., Guo L.J., Tran S., Dahlback B. High-density lipoprotein-associated apolipoprotein m limits endothelial inflammation by delivering sphingosine-1-phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler. Thromb. Vasc. Biol, 2017; 37 (1): 118–129. doi:10.1161/ATVBAHA.116.308435

18. Tamama K., Tomura H., Sato K., Malchinkhuu E., Damirin A., Kimura T., Kuwabara A., Murakami M., Okajima F. High-density lipoprotein inhibits migration of vascular smooth muscle cells through its sphingosine 1-phosphate component. Atherosclerosis, 2005; 178 (1): 19–23. doi:10.1016/j.atherosclerosis.2004.07.032

19. Matloubian M., Lo C.G., Cinamon G., Lesneski M.J., Xu Y., Brinkmann V., Allende M.L., Proia R.L., Cyster J.G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 2004; 427 (6972): 355–360. doi:10.1038/nature02284

20. Drouillard A., Neyra A., Mathieu A.L., Marçais A., Wencker M., Marvel J., Belot A., Walzer T. Human naive and memory T cells display opposite migratory responses to sphingosine-1 phosphate. J. Immunol, 2018; 200 (2): 551–557. doi:10.4049/jimmunol.1701278

21. Lucaciu A., Kuhn H., Trautmann S., Ferreirós N., Steinmetz H., Pfeilschifter J., Brunkhorst R., Pfeilschifter W., Subburayalu J., Vutukuri R. A Sphingosine 1-phosphate gradient is linked to the cerebral recruitment of T helper and regulatory T helper cells during acute ischemic stroke. Int. J. Mol. Sci., 2020; 21 (17). doi:10.3390/ijms21176242

22. Cao R., Li J., Kharel Y., Zhang C., Morris E., Santos W.L., Lynch K.R., Zuo Z., Hu S. Photoacoustic microscopy reveals the hemodynamic basis of sphingosine 1-phosphate-induced neuroprotection against ischemic stroke. Theranostics, 2018; 8 (22): 6111–6120. doi:10.7150/thno.29435

23. Bojic L.A., McLaren D.G., Shah V., Previs S.F., Johns D.G., Castro-Perez J.M. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits. Int. J. Mol. Sci., 2014; 15 (12): 23283–23293. doi:10.3390/ijms151223283

24. Vorkas P.A., Shalhoub J., Lewis M.R., Spagou K., Want E.J., Nicholson J.K., Davies A.H., Holmes E. Metabolic phenotypes of carotid atherosclerotic plaques relate to stroke risk: an exploratory study. Eur. J. Vasc. Endovasc. Surg., 2016; 52 (1): 5–10. doi:10.1016/j.ejvs.2016.01.022

25. Edsfeldt A., Dunér P., Ståhlman M., Mollet I.G., Asciutto G., Grufman H., Nitulescu M., Persson A.F., Fisher R.M., Melander O., Orho-Melander M., Borén J., Nilsson J., Gonçalves I. Sphingolipids contribute to human atherosclerotic plaque inflammation. Arterioscler. Thromb. Vasc. Biol., 2016; 36 (6): 1132– 1140. doi:10.1161/atvbaha.116.305675

26. Testai F.D., Hillmann M., Amin-Hanjani S., Gorshkova I., Berdyshev E., Gorelick P.B., Dawson G. Changes in the cerebrospinal fluid ceramide profile after subarachnoid hemorrhage. Stroke, 2012; 43 (8): 2066–2070. doi:10.1161/strokeaha.112.650390

27. Fiedorowicz A., Kozak-Sykała A., Bobak Ł., Kałas W., Strządała L. Ceramides and sphingosine-1-phosphate as potential markers in diagnosis of ischaemic stroke. Neurologia i neurochirurgia polska, 2019; 53 (6): 484– 491. doi:10.5603/PJNNS.a2019.0063

28. Gui Y.K., Li Q., Liu L., Zeng P., Ren R.F., Guo Z.F., Wang G.H., Song J.G., Zhang P. Plasma levels of ceramides relate to ischemic stroke risk and clinical severity. Brain Res. Bull., 2020; 158: 122–127. doi:10.1016/j.brainresbull.2020.03.009

29. Chao H.C., Lee T.H., Chiang C.S., Yang S.Y., Kuo C.H., Tang S.C. Sphingolipidomics investigation of the temporal dynamics after ischemic brain injury. J. Proteome Res., 2019; 18 (9): 3470–3478. doi:10.1021/acs.jproteome.9b00370

30. Guo X., Li Z., Zhou Y., Yu S., Yang H., Zheng L., Liu Y., Sun Y. Metabolic profile for prediction of ischemic stroke in chinese hypertensive population. J. Stroke Cerebrovasc. Dis., 2019; 28 (4): 1062–1069. doi:10.1016/j.jstrokecerebrovasdis.2018.12.035

31. Lind L., Salihovic S., Ganna A., Sundstrom J., Broeckling C.D., Magnusson P.K., Pedersen N.L., Siegbahn A., Prenni J., Fall T., Ingelsson E., Arnlov J. A Multi-cohort metabolomics analysis discloses sphingomyelin (32:1) levels to be inversely related to incident ischemic stroke. J. Stroke Cerebrovasc., Dis., 2020; 29 (2): 104476. doi:10.1016/j.jstrokecerebrovasdis.2019.104476


Review

For citations:


Rogozhina A.A. Sphingolipids in ischemic stroke. Ateroscleroz. 2021;17(4):93-100. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-4-93-100

Views: 333


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)