Variants of the HNF4A and HNF1A genes in patients with impaired glucose metabolism and dyslipidemia
https://doi.org/10.52727/2078-256X-2021-17-4-11-19
Abstract
Maturity onset diabetes of the young is a dominantly inherited form of monogenic diabetes, diagnosed mainly before the age of 35 years. Mutations in the HNF1A and HNF4A genes are associated with diabetes mellitus of the HNF1A-MODY and HNF4A-MODY subtypes, respectively. These two forms of MODY are characterized by dyslipidemia in addition to impaired glucose metabolism due to the altered function HNF1A and HNF4A proteins. The aim of this study was a genetic analysis of young patients with the MODY phenotype and dyslipidemia with a burdened family history. Material and methods. The probands underwent targeted DNA sequencing using the Illumina MiSeq NGS System. The target panel included the coding regions and splicing sites of MODY-associated genes: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. Results. A heterozygous single nucleotide deletion NM_000457.4: c.153del (3’rule) was found in proband P1 in the HNF4A gene. In proband P2, single nucleotide deletion NM_000545.8: c.335del (3 ‘rule) in the HNF1A gene was detected in a heterozygous state. Both variants are located in the coding parts of the genes, led to a shift in the reading frame and have not been described in the literature and databases earlier. Conclusions. Taking into account the phenotypic features of probands, we assume that the variants NM_000545.8: c.335del (rule 3) in the HNF1A gene and NM_000457.4: c.153del (rule 3) of the HNF4A gene are associated with different MODY subtypes in these individuals. After verification of MODY-HNF1A and MODY-HNF4A diagnosis, it is necessary to monitor the lipid profile parameters (total cholesterol, low and high density lipoprotein cholesterol, triglycerides) and prescribe appropriate drug therapy.
Keywords
About the Authors
D. E. IvanoshchukRussian Federation
Dinara E. Ivanoshchuk, junior researcher in the laboratory of human molecular genetics, Institute of Cytology and Genetics, SB RAS; researcher in the laboratory of molecular genetic investigations of therapeutic diseases, RIIPM – Branch ICG SB RAS
630090, Novosibirsk, Academician Lavrentiev av., 10
630089, Novosibirsk, Boris Bogatkov str., 175/1
A. K. Ovsyannikova
Russian Federation
Alla K. Ovsyannikova, PhD, MD, a senior researcher in the laboratory of clinical and populational preventive research of therapeutic and endocrine diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
S. V. Mikhailova
Russian Federation
Svetlana V. Mikhailova, PhD, head of the laboratory of human molecular genetics
630090, Novosibirsk, Academician Lavrentiev av., 10
E. V. Shakhtshneider
Russian Federation
Elena V. Shakhtshneider, PhD, MD, head of the laboratory monogenic form of common diseases, ICG SB RAS; leader researcher in the laboratory of molecular genetic investigations of therapeutic diseases, RIIPM – Branch ICG SB RAS
630090, Novosibirsk, Academician Lavrentiev av., 10
630089, Novosibirsk, Boris Bogatkov str., 175/1
E. S. Valeev
Russian Federation
Emil S. Valeev, student
630090, Novosibirsk, Academician Lavrentiev av., 10
O. D. Rymar
Russian Federation
Oksana D. Rymar, PhD, MD, head of the laboratory of clinical and population preventive research of therapeutic
and endocrine diseases
630089, Novosibirsk, Boris Bogatkov str., 175/1
P. S. Orlov
Russian Federation
Pavel S. Orlov, junior researcher in the laboratory of human molecular genetics, ICG SB RAS; researcher in the
laboratory of molecular genetic investigations of therapeutic diseases, RIIPM – Branch ICG SB RAS
630090, Novosibirsk, Academician Lavrentiev av., 10
630089, Novosibirsk, Boris Bogatkov str., 175/1
M. I. Voevoda
Russian Federation
Mikhail I. Voevoda, a member of the Russian Academy of Sciences, PhD, MD, ScD, Professor, head of the department of human molecular genetics, ICG SB RAS
630090, Novosibirsk, Academician Lavrentiev av., 10
References
1. Lachanse C.H. Practical aspects of monogenic diabetes: a clinical point of view. Can. J. Diabetes, 2016; 40: 368–375. doi:10.1016/j.jcjd.2015.11.004
2. Firdous P., Nissar K., Ali S., Ganai B.A., Shabir U., Hassan T., Masoodi S.R. Genetic testing of maturityonset diabetes of the young current status and future perspectives. Front. Endocrinol. (Lausanne), 2018; 9: 253. doi:10.3389/fendo.2018.00253
3. Anık A., Çatlı G., Abacı A., Böber E. Maturity-onset diabetes of the young (MODY): an update. J. Pediatr. Endocrinol. Metab., 2015; 28; 251–263. doi:10.1515/jpem-2014-0384
4. Pearson E.R., Pruhova S., Tack C.J., Johansen A., Castleden H.A., LumbP.J., Wierzbicki A.S., ClarkP.M., Lebl J., Pedersen O. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia, 2005; 48: 878–885. doi:10.1007/s00125-005-1738-y
5. Voevoda M.I., Ivanova A.A., Shakhtshneider E.V., Ovsyannikova A.K., Mikhailova S.V., Astrakova K.S., Voevoda S.M., Rymar O.D. Molecular genetics of maturity-onset diabetes of the young. Terapevticheskiy arkhiv, 2016; 88 (4): 117–124. (in Russ.). doi:10.17116/terarkh2016884117-124.
6. Sambrook J. Russell D.W. Purification of nucleic acids by extraction with phenol: Chloroform. Cold Spring Harb. Protoc., 2006; 2006: 4455. doi:10.1101/pdb.prot4455
7. Stenson P.D., Ball E.V., Mort M., Phillips A.D., Shiel J.A., Thomas N.S.T., Abeysinghe S., Krawczak M., Cooper D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat., 2003; 21: 577–581. doi:10.1002/humu.10212
8. Richards S., Aziz N., Bale S., Bick D., Das S., GastierFoster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L., ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med., 2015; 17 (5): 405–424. doi:10.1038/gim.2015.30
9. Thanabalasingham G., Pal A., Selwood M.P., Dudley C., Fisher K., Bingley P.J., Ellard S., Farmer A.J., McCarthy M.I., Owen K.R. Systematic assessment of etiology in adults with a clinical diagnosis of youngonset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care, 2012; 35: 1206–1212. doi:10.2337/dc11-1243
10. Odom D.T., Zizlsperger N., Gordon D.B., Bell G.W., Rinaldi N.J., Murray H.L., Volkert T.L., Schreiber J., Rolfe P.A., Gifford D.K., Fraenkel E., Bell G.I., Young R.A. Control of pancreas and liver gene expression by HNF transcription factors. Science, 2004; 303 (5662): 1378–1381. doi:10.1126/science.1089769
11. Hansen S.K., Parrizas M., Jensen M.L., Pruhova S., Ek J., Boj S.F., Johansen A., Maestro M.A., Rivera F., Eiberg H. Genetic evidence that HNF-1alphadependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function. J. Clin. Invest., 2002; 110: 827–833. doi:10.1172/JCI15085
12. Kyithar M.P., Bonner C., Bacon S., Kilbride S.M., Schmid J., Graf R., Prehn J.H., Byrne M.M. Effects of hepatocyte nuclear factor-1A and -4A on pancreatic stone protein/regenerating protein and C-reactive protein gene expression: implications for maturity-onset diabetes of the young. J. Transl. Med., 2013; 11: 156. doi:10.1186/1479-5876-11-156
13. Yin L., Ma H., Ge X., Edwards P.A., Zhang Y. Hepatic hepatocyte nuclear factor 4alpha is essential for maintaining triglyceride and cholesterol homeostasis. Arterioscler. Thromb. Vasc. Biol., 2011; 31 (2): 328– 336. doi:10.1161/ATVBAHA.110.217828
14. Yamagata K. Roles of HNF1α and HNF4α in pancreatic β-cells: lessons from a monogenic form of diabetes (MODY). Vitam. Horm., 2014; 95: 407–423. doi:10.1016/B978-0-12-800174-5.00016-8
15. Hayhurst G.P., Lee Y.H., Lambert G., Ward J.M., Gonzalez F.J. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol., 2001; 21 (4): 1393–1403. doi:10.1128/MCB.21.4.1393-1403.2001
16. Hadzopoulou-Cladaras M., Kistanova E., Evagelopoulou C., Zeng S., Cladaras C., Ladias J.A. Functional domains of the nuclear receptor hepatocyte nuclear factor 4. J. Biol. Chem., 1997; 272 (1): 539–550. doi:10.1074/jbc.272.1.539
17. Weissglas-Volkov D., Huertas-Vazquez A., Suviolahti E., Lee J., Plaisier C., Canizales-Quinteros S., Tusie-Luna T., Aguilar-Salinas C., Taskinen M.R., Pajukanta P. Common hepatic nuclear factor-4alpha variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes, 2006; 55 (7): 1970–1977. doi:10.2337/db06-0035
18. Pelletier L., Rebouissou S., Vignjevic D., BioulacSage P., Zucman-Rossi J. HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines. BMC Cancer. 2011; 5: 11: 427. doi:10.1186/1471-2407-11-427
19. Schrem H., Klempnauer J., Borlak J. Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol. Rev., 2002; 54 (1): 129–158. doi:10.1124/pr.54.1.129
20. Tan J., Xu J., Wei G., Zhang L., Sun L., Wang G., Li F., Jiang F. HNF1α controls liver lipid metabolism and insulin resistance via negatively regulating the SOCS-3-STAT3 signaling pathway. J. Diabetes Res., 2019; 15; 2019: 5483946. doi:10.1155/2019/5483946
21. St-Jean M., Boudreau F., Carpentier A.C., Hivert M.F. HNF1α defect influences post-prandial lipid regulation. PLoS One, 2017; 12 (5): e0177110. doi:10.1371/journal.pone.0177110
22. Ekholm E., Nilsson R., Groop L., Pramfalk C. Alterations in bile acid synthesis in carriers of hepatocyte nuclear factor 1α mutations. J. Intern. Med., 2013; 274 (3): 263–272. doi:10.1111/joim.12082
23. Liu F., Zhu X., Jiang X., Li S., Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Diseases, 2021. [epub ahead of print]. doi:10.1016/j.gendis.2021.06.010
24. Hu M., Huang X., Han X., Ji L. Loss of HNF1α function contributes to hepatocyte proliferation and abnormal cholesterol metabolism via downregulating miR-122: A novel mechanism of MODY3. Diabetes Metab. Syndr. Obes., 2020; 13: 627–639. doi:10.2147/DMSO.S236915
25. Huang X., Gong S., Ma Y., Cai X., Zhou L., Luo Y., Li M., Liu W., Zhang S., Zhang X., Ren Q., Zhu Y., Zhou X., Zhang R., Chen L., Gao X., Zhang F., Wang Y., Han X., Ji L. Lower circulating miR-122 level in patients with HNF1A variant-induced diabetes compared with type 2 diabetes. J. Diabetes Res., 2018; 2018: 7842064. doi:10.1155/2018/7842064
26. Mendel D.B., Hansen L.P., Graves M.K., Conley P.B., Crabtree G.R. HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev., 1991; 5 (6): 1042–1056. doi:10.1101/gad.5.6.1042
Review
For citations:
Ivanoshchuk D.E., Ovsyannikova A.K., Mikhailova S.V., Shakhtshneider E.V., Valeev E.S., Rymar O.D., Orlov P.S., Voevoda M.I. Variants of the HNF4A and HNF1A genes in patients with impaired glucose metabolism and dyslipidemia. Ateroscleroz. 2021;17(4):11-19. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-4-11-19