Preview

Ateroscleroz

Advanced search

Variants of the HNF4A and HNF1A genes in patients with impaired glucose metabolism and dyslipidemia

https://doi.org/10.52727/2078-256X-2021-17-4-11-19

Abstract

Maturity onset diabetes of the young is a dominantly inherited form of monogenic diabetes, diagnosed mainly before the age of 35 years. Mutations in the HNF1A and HNF4A genes are associated with diabetes mellitus of the HNF1A-MODY and HNF4A-MODY subtypes, respectively. These two forms of MODY are characterized by dyslipidemia in addition to impaired glucose metabolism due to the altered function HNF1A and HNF4A proteins. The aim of this study was a genetic analysis of young patients with the MODY phenotype and dyslipidemia with a burdened family history. Material and methods. The probands underwent targeted DNA sequencing using the Illumina MiSeq NGS System. The target panel included the coding regions and splicing sites of MODY-associated genes: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. Results. A heterozygous single nucleotide deletion NM_000457.4: c.153del (3’rule) was found in proband P1 in the HNF4A gene. In proband P2, single nucleotide deletion NM_000545.8: c.335del (3 ‘rule) in the HNF1A gene was detected in a heterozygous state. Both variants are located in the coding parts of the genes, led to a shift in the reading frame and have not been described in the literature and databases earlier. Conclusions. Taking into account the phenotypic features of probands, we assume that the variants NM_000545.8: c.335del (rule 3) in the HNF1A gene and NM_000457.4: c.153del (rule 3) of the HNF4A gene are associated with different MODY subtypes in these individuals. After verification of MODY-HNF1A and MODY-HNF4A diagnosis, it is necessary to monitor the lipid profile parameters (total cholesterol, low and high density lipoprotein cholesterol, triglycerides) and prescribe appropriate drug therapy.

About the Authors

D. E. Ivanoshchuk
Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Dinara E. Ivanoshchuk, junior researcher in the laboratory of human molecular genetics, Institute of Cytology and Genetics, SB RAS; researcher in the laboratory of molecular genetic investigations of therapeutic diseases, RIIPM – Branch ICG SB RAS

630090, Novosibirsk, Academician Lavrentiev av., 10
630089, Novosibirsk, Boris Bogatkov str., 175/1



A. K. Ovsyannikova
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Alla K. Ovsyannikova, PhD, MD, a senior researcher in the laboratory of clinical and populational preventive research of therapeutic and endocrine diseases

630089, Novosibirsk, Boris Bogatkov str., 175/1



S. V. Mikhailova
Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Svetlana V. Mikhailova, PhD, head of the laboratory of human molecular genetics

630090, Novosibirsk, Academician Lavrentiev av., 10



E. V. Shakhtshneider
Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Elena V. Shakhtshneider, PhD, MD, head of the laboratory monogenic form of common diseases, ICG SB RAS; leader researcher in the laboratory of molecular genetic investigations of therapeutic diseases, RIIPM – Branch ICG SB RAS

630090, Novosibirsk, Academician Lavrentiev av., 10
630089, Novosibirsk, Boris Bogatkov str., 175/1



E. S. Valeev
Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Emil S. Valeev, student

630090, Novosibirsk, Academician Lavrentiev av., 10



O. D. Rymar
Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Oksana D. Rymar, PhD, MD, head of the laboratory of clinical and population preventive research of therapeutic
and endocrine diseases

630089, Novosibirsk, Boris Bogatkov str., 175/1



P. S. Orlov
Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Pavel S. Orlov, junior researcher in the laboratory of human molecular genetics, ICG SB RAS; researcher in the
laboratory of molecular genetic investigations of therapeutic diseases, RIIPM – Branch ICG SB RAS

630090, Novosibirsk, Academician Lavrentiev av., 10
630089, Novosibirsk, Boris Bogatkov str., 175/1



M. I. Voevoda
Federal State Budgetary Institution of Science Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Mikhail I. Voevoda, a member of the Russian Academy of Sciences, PhD, MD, ScD, Professor, head of the department of human molecular genetics, ICG SB RAS

630090, Novosibirsk, Academician Lavrentiev av., 10



References

1. Lachanse C.H. Practical aspects of monogenic diabetes: a clinical point of view. Can. J. Diabetes, 2016; 40: 368–375. doi:10.1016/j.jcjd.2015.11.004

2. Firdous P., Nissar K., Ali S., Ganai B.A., Shabir U., Hassan T., Masoodi S.R. Genetic testing of maturityonset diabetes of the young current status and future perspectives. Front. Endocrinol. (Lausanne), 2018; 9: 253. doi:10.3389/fendo.2018.00253

3. Anık A., Çatlı G., Abacı A., Böber E. Maturity-onset diabetes of the young (MODY): an update. J. Pediatr. Endocrinol. Metab., 2015; 28; 251–263. doi:10.1515/jpem-2014-0384

4. Pearson E.R., Pruhova S., Tack C.J., Johansen A., Castleden H.A., LumbP.J., Wierzbicki A.S., ClarkP.M., Lebl J., Pedersen O. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia, 2005; 48: 878–885. doi:10.1007/s00125-005-1738-y

5. Voevoda M.I., Ivanova A.A., Shakhtshneider E.V., Ovsyannikova A.K., Mikhailova S.V., Astrakova K.S., Voevoda S.M., Rymar O.D. Molecular genetics of maturity-onset diabetes of the young. Terapevticheskiy arkhiv, 2016; 88 (4): 117–124. (in Russ.). doi:10.17116/terarkh2016884117-124.

6. Sambrook J. Russell D.W. Purification of nucleic acids by extraction with phenol: Chloroform. Cold Spring Harb. Protoc., 2006; 2006: 4455. doi:10.1101/pdb.prot4455

7. Stenson P.D., Ball E.V., Mort M., Phillips A.D., Shiel J.A., Thomas N.S.T., Abeysinghe S., Krawczak M., Cooper D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat., 2003; 21: 577–581. doi:10.1002/humu.10212

8. Richards S., Aziz N., Bale S., Bick D., Das S., GastierFoster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L., ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med., 2015; 17 (5): 405–424. doi:10.1038/gim.2015.30

9. Thanabalasingham G., Pal A., Selwood M.P., Dudley C., Fisher K., Bingley P.J., Ellard S., Farmer A.J., McCarthy M.I., Owen K.R. Systematic assessment of etiology in adults with a clinical diagnosis of youngonset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care, 2012; 35: 1206–1212. doi:10.2337/dc11-1243

10. Odom D.T., Zizlsperger N., Gordon D.B., Bell G.W., Rinaldi N.J., Murray H.L., Volkert T.L., Schreiber J., Rolfe P.A., Gifford D.K., Fraenkel E., Bell G.I., Young R.A. Control of pancreas and liver gene expression by HNF transcription factors. Science, 2004; 303 (5662): 1378–1381. doi:10.1126/science.1089769

11. Hansen S.K., Parrizas M., Jensen M.L., Pruhova S., Ek J., Boj S.F., Johansen A., Maestro M.A., Rivera F., Eiberg H. Genetic evidence that HNF-1alphadependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function. J. Clin. Invest., 2002; 110: 827–833. doi:10.1172/JCI15085

12. Kyithar M.P., Bonner C., Bacon S., Kilbride S.M., Schmid J., Graf R., Prehn J.H., Byrne M.M. Effects of hepatocyte nuclear factor-1A and -4A on pancreatic stone protein/regenerating protein and C-reactive protein gene expression: implications for maturity-onset diabetes of the young. J. Transl. Med., 2013; 11: 156. doi:10.1186/1479-5876-11-156

13. Yin L., Ma H., Ge X., Edwards P.A., Zhang Y. Hepatic hepatocyte nuclear factor 4alpha is essential for maintaining triglyceride and cholesterol homeostasis. Arterioscler. Thromb. Vasc. Biol., 2011; 31 (2): 328– 336. doi:10.1161/ATVBAHA.110.217828

14. Yamagata K. Roles of HNF1α and HNF4α in pancreatic β-cells: lessons from a monogenic form of diabetes (MODY). Vitam. Horm., 2014; 95: 407–423. doi:10.1016/B978-0-12-800174-5.00016-8

15. Hayhurst G.P., Lee Y.H., Lambert G., Ward J.M., Gonzalez F.J. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol., 2001; 21 (4): 1393–1403. doi:10.1128/MCB.21.4.1393-1403.2001

16. Hadzopoulou-Cladaras M., Kistanova E., Evagelopoulou C., Zeng S., Cladaras C., Ladias J.A. Functional domains of the nuclear receptor hepatocyte nuclear factor 4. J. Biol. Chem., 1997; 272 (1): 539–550. doi:10.1074/jbc.272.1.539

17. Weissglas-Volkov D., Huertas-Vazquez A., Suviolahti E., Lee J., Plaisier C., Canizales-Quinteros S., Tusie-Luna T., Aguilar-Salinas C., Taskinen M.R., Pajukanta P. Common hepatic nuclear factor-4alpha variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes, 2006; 55 (7): 1970–1977. doi:10.2337/db06-0035

18. Pelletier L., Rebouissou S., Vignjevic D., BioulacSage P., Zucman-Rossi J. HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines. BMC Cancer. 2011; 5: 11: 427. doi:10.1186/1471-2407-11-427

19. Schrem H., Klempnauer J., Borlak J. Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol. Rev., 2002; 54 (1): 129–158. doi:10.1124/pr.54.1.129

20. Tan J., Xu J., Wei G., Zhang L., Sun L., Wang G., Li F., Jiang F. HNF1α controls liver lipid metabolism and insulin resistance via negatively regulating the SOCS-3-STAT3 signaling pathway. J. Diabetes Res., 2019; 15; 2019: 5483946. doi:10.1155/2019/5483946

21. St-Jean M., Boudreau F., Carpentier A.C., Hivert M.F. HNF1α defect influences post-prandial lipid regulation. PLoS One, 2017; 12 (5): e0177110. doi:10.1371/journal.pone.0177110

22. Ekholm E., Nilsson R., Groop L., Pramfalk C. Alterations in bile acid synthesis in carriers of hepatocyte nuclear factor 1α mutations. J. Intern. Med., 2013; 274 (3): 263–272. doi:10.1111/joim.12082

23. Liu F., Zhu X., Jiang X., Li S., Lv Y. Transcriptional control by HNF-1: Emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Diseases, 2021. [epub ahead of print]. doi:10.1016/j.gendis.2021.06.010

24. Hu M., Huang X., Han X., Ji L. Loss of HNF1α function contributes to hepatocyte proliferation and abnormal cholesterol metabolism via downregulating miR-122: A novel mechanism of MODY3. Diabetes Metab. Syndr. Obes., 2020; 13: 627–639. doi:10.2147/DMSO.S236915

25. Huang X., Gong S., Ma Y., Cai X., Zhou L., Luo Y., Li M., Liu W., Zhang S., Zhang X., Ren Q., Zhu Y., Zhou X., Zhang R., Chen L., Gao X., Zhang F., Wang Y., Han X., Ji L. Lower circulating miR-122 level in patients with HNF1A variant-induced diabetes compared with type 2 diabetes. J. Diabetes Res., 2018; 2018: 7842064. doi:10.1155/2018/7842064

26. Mendel D.B., Hansen L.P., Graves M.K., Conley P.B., Crabtree G.R. HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev., 1991; 5 (6): 1042–1056. doi:10.1101/gad.5.6.1042


Review

For citations:


Ivanoshchuk D.E., Ovsyannikova A.K., Mikhailova S.V., Shakhtshneider E.V., Valeev E.S., Rymar O.D., Orlov P.S., Voevoda M.I. Variants of the HNF4A and HNF1A genes in patients with impaired glucose metabolism and dyslipidemia. Ateroscleroz. 2021;17(4):11-19. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-4-11-19

Views: 1061


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)