Preview

Ateroscleroz

Advanced search

METALLOPROTEINASE AND ATHEROSCLEROSIS

Abstract

The review presents modern data on matrix metalloproteinases, their activators and inhibitors, as well as the results of numerous experimental and clinical studies of blood levels of these destructive enzymes in atherosclerosis, cardiovascular diseases and their complications, and discusses the mechanisms of action of metalloproteinases that lead to destabilization and rupture of atherosclerotic plaques.

About the Authors

Ya. V. Polonskaya
Institute of Internal and Preventive Medicine - Branch of Federal Research Institute of Cytology and Genetics of SB RAS
Russian Federation


Yu. I. Ragino
Institute of Internal and Preventive Medicine - Branch of Federal Research Institute of Cytology and Genetics of SB RAS
Russian Federation


References

1. Чазова И.Е., Ощепкова Е.В. Об актуальных проблемах борьбы с сердечно-сосудистыми заболеваниями // Аналит. вестн. 2015. Т. 44 (597). С. 4-9.

2. Бокерия Л.А., Гудкова Р.Г. Болезни системы кровообращения и сердечно-сосудистая хирургия в Российской Федерации. Состояние и проблемы // Аналит. вестн. 2015. Т. 44 (597). С. 9-19.

3. Капутин М.Ю., Бирюков А.В., Медведев А.А. Актуальные вопросы диагностики и лечения нестабильных коронарных атеросклеротических бляшек // Креативная кардиология. 2015. № 4. С. 34-39.

4. Shah P.K. Biomarkers of plaque instability // Curr. Cardiol. Rep. 2014. Vol. 16 (12). P. 547.

5. Holschermann H., Tillmanns H., Bode C. Pathophysiology of acute coronary syndrome // Hamostaseologie. 2006. Vol. 26, N 2. P. 99-103.

6. Shah P.K. Cellelar and molecular mechanisms of plaque rupture // High-risk atherosclerotic plaques: mechanisms, imaging, models, and therapy / Ed. L.M. Khachigian. New York: CRC Press, 2005. P. 1-19.

7. Waksman R., Seruys P.W. Handbook of the vulnerable plaque. London, 2004. P. 1-48.

8. Johnson J.L. Metalloproteinases in atherosclerosis // Eur. J. Pharmacol. 2017, Sep 9. doi: 10.1016/j.ejphar. 2017.09.007.

9. Galis Z.S., Muszynski M., Sukhova G.K. et al. Enhanced expression of vascular matrix metalloproteinases induced in vitro by cytokines and in regions of human atherosclerotic lesions // Ann. N.Y. Acad. Sci. 1995. Vol. 748. P. 501-507.

10. Galis Z.S., Khatri J.J. Matrix metalloproteinases in vascular remodelling and atherogenesis: the good, the bad, and the ugly // Circ. Res. 2002. Vol. 90. P. 251-262.

11. Loftus I.M. Increased matrix MMP-9 activity in unstable carotid plaques: а potential role in acute plaque disruption // Stroke. 2000. Vol. 31. P. 40-47.

12. Маркелова Е.В., Здор В.В., Романчук А.Л., Бирко О.Н. Матриксные металлопротеиназы: их взаимосвязь с системой цитокинов, диагностический и прогностический потенциал // Иммунопатология, аллергология, инфектология. 2016. № 2. С. 11-22.

13. Лесниченко И.Ф., Грицаев C.В., Капустин С.И. Матриксные металлопротеиназы: характеристика, роль в лейкозогенезе и прогностическое значение // Вопр. онкологии. 2011. Т. 57, № 3. С. 286-294.

14. Lee Eun-Jung, Moon Pyong-Gon, Baek Moon-Chang, Kim Hee-Sun. Comparison of the effects of matrix metalloproteinase inhibitors on TNF-a release from activated microglia and TNF-a converting enzyme activity // Biomolecules Therapeutics. 2014. Vol. 5. P. 414-419.

15. Соловьева Н.И. Матриксные металлопротеиназы и их биологические функции // Биоорган. химия. 1998. Т. 24, № 4. С. 245-255.

16. Raffetto J.D., Khalil R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease // Biochem. Pharmacol. 2008. Vol. 75, N 2. P. 346-359.

17. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry // Circ. Res. 2003. Vol. 92, N 8. P. 827-839.

18. Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling // Nat. Rev. Mol. Cell Biol. 2007. Vol. 8, N 3. P. 221-233.

19. Bellayr I.H., Mu X., Li Y. Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments // Future Med. Chem. 2009. Vol. 1, N 6. P. 1095-1111.

20. Brew K., Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity // Biochim. Biophys. Acta. 2010. Vol. 1803, N 1. P. 55-71.

21. Ярмолинская М.И., Молотков А.С., Денисова В.М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия // Журн. акушерства и женских болезней. 2012. Т. 61, № 1. С. 113-125.

22. Шадрина А.С., Плиева Я.З., Кушлинский Д.Н., Морозов А.А., Филипенко М.Л., Чанг В.Л., Кушлинский Н.Е. Классификация, регуляция активности, генетический полиморфизм матриксных металлопротеиназ в норме и при патологии // Альманах клин. медицины. 2017. Т. 45, № 4. С. 266-279.

23. Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs // Cardiovasc. Res. 2006. Vol. 69, N 3. P. 562-573.

24. Cieplak P., Strongin A.Y. Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond // Biochim. Biophys. Acta. 2017. Vol. 1864 (11 Pt A). P. 1952-1963.

25. Newby A.C. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation // Matrix Biol. 2015. Vol. 44-46. P. 157-166.

26. Волков В.И., Калашник Д.Н., Серик С.А. Изменение уровня матриксной металлопротеиназы-9 у больных со стабильной и нестабильной стенокардией // Укр. терапевт. журн. 2006. № 1. С. 4-7.

27. Климов А.Н., Никульчева Н.Г. Липиды, липопротеиды и атеросклероз. СПб.: Питер Пресс, 1995. 304 с.

28. Kelly E.A., Busse W.W., Jarjour N.N. Increased matrix metalloproteinase-9 in the airway after allergen challenge // Am. J. Respir. Crit. Care Med. 2000. Vol. 162. P. 1157-1161.

29. O’Callaghan C.J., Williams B. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta // Hypertension. 2000. Vol. 36, N 3. P. 319-324.

30. Castellanos M., Leira R., Serena J. et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke // Stroke. 2003. Vol. 34. P. 40-46.

31. Back M., Ketelhuth D.F., Agewall S. Matrix metalloproteinases in atherothrombosis // Prog. Cardiovasc. Dis. 2010. Vol. 52. P. 410-428.

32. Brinckerhoff C.E., Matrisian L.M. Matrix metalloproteinases: a tail of a frog that became a prince // Nature Rev. Mol. Cell Biol. 2002. Vol. 3. P. 207-214.

33. Davies M.J. Coronary disease: The pathophysiology of acute coronary syndromes // Hear. 2000. Vol. 83. P. 361-366.

34. Bonanno E., Mauriello A., Partenzi A. et al. Flow cytometryanalisis of atherosclerotic plaque cells from human carotids: a validation study // Cytometry. 2000. Vol. 39, N 2. P. 158-165.

35. Полонская Я.В., Чернявский А.М., Волков А.М. и др. Корреляции биомаркеров воспаления и деструкции в крови и в сосудистой стенке у мужчин с коронарным атеросклерозом // Сиб. науч. мед. журн. 2011. Т. 31, № 5. С. 25-30.

36. Полонская Я.В., Чернявский А.М., Волков А.М., Каштанова Е.В., Цымбал С.Ю., Рагино Ю.И. Корреляции биомаркеров воспаления и деструкции в крови и в сосудистой стенке у мужчин с коронарным атеросклерозом // Сиб. науч. мед. журн. 2011. № 5. С. 25-31.

37. Рагино Ю.И., Чернявский А.М., Полонская Я.В. и др. Воспалительно-деструктивные биомаркеры нестабильности атеросклеротических бляшек: исследования сосудистой стенки и крови // Кардиология. 2012. Т. 52, № 5. С. 37-41.

38. Lijnen H.N. Extracellular proteolysis in the development and progression of atherosclerosis. // Biochem. Soc. 2002. Vol. 30, N 2. P. 163-167.

39. Moreau M., Brocheriou I., Petit L., Moreau M. Interleukin-8 mediates down-regulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plague // Circulation. 1999. Vol. 99. P. 420-426.

40. Gu C., Wang F., Hou Z. et al. Sex-related differences in serum matrix metalloproteinase-9 screening non-calcified and mixed coronary atherosclerotic plaques in outpatients with chest pain // Heart Vessels. 2017, Jul 19. doi: 10.1007/s00380-017-1014-3.

41. Silvello D., Narvaes L.B., Albuquerque L.C. et al. Serum levels and polymorphisms of matrix metalloproteinases (MMPs) in carotid artery atherosclerosis: higher MMP-9levels are associated with plaque vulnerability // Biomarkers. 2014. Vol. 19, N 1. P. 49-55.

42. Funayama H., Ishikawa S., Kubo N. et al. Increases in interleukin-6 and matrix metalloproteinase-9 in the infarct-related coronary artery of acute myocardial infarction // Circulation. J. 2004. Vol. 68. P. 451-454.

43. Halpert I., Sires U. I., Roby J.D. et al. Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan Substrate for the enzyme // Proc. Natl. Acad. Sci. USA. 1996. Vol. 93. P. 9748-9753.

44. Huang W.C., Sala-Newby G.B., Susana A., Johnson J.L., Newby A.C. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB // PLoS One. 2012. Vol. 7: e42507.

45. Wallner K., Li C., Shah P.K. et al. Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque // Circulation. 1999. Vol. 99. P. 1284-1289.

46. Kajiwara K., Ueda H., Yamomoto H. et al. Tenascin-C is associated with coronary plaque instability in patients with acute coronary syndromes // Circulation. J. 2004. Vol. 68. P. 198-203.

47. Uzui H., Harpf A., Liu M et al. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque // Circulation. 2002. Vol. 106, N 24. P. 3024-3036.


Review

For citations:


Polonskaya Ya.V., Ragino Yu.I. METALLOPROTEINASE AND ATHEROSCLEROSIS. Ateroscleroz. 2017;13(3):50-55. (In Russ.)

Views: 508


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)