Preview

Ateroscleroz

Advanced search

MOLECULAR-GENETICAL MARKERS OF LIPID ABNORMALITIES AND SUDDEN CARDIAC DEATH

Abstract

Sudden cardiac death is one of main problem of modern medicine. Sudden cardiac death is about 50 % of all cardiac deaths. The main part of people who died of sudden cardiac death didn’t have any cardiac illnesses. In the world molecular genetic markers of sudden cardiac death are studied to create an effective system of diagnostic of predisposition and prophylactic of sudden deaths, especially to people without cardiac diseases. Lipid abnormalities are one of risk factor of sudden cardiac death. Single nucleotide polymorphisms of CETP, APOE, SREBF2, SCAP, LIPC, USF1, LDLR genes were studied as molecular genetic markers of sudden cardiac death.

About the Author

A. A. Ivanova
Institute of Internal and Preventive Medicine
Russian Federation


References

1. Priori S.G., Aliot E., Blømstrom-Lundqvist C. et al. The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) // G. Ital. Cardiol. 2016. Vol. 17, N 2. P. 108-170.

2. Шляхто Е.В., Арутюнов Г.П., Беленков Ю.Н. Национальные рекомендации по определению риска и профилактике внезапной сердечной смерти // Aрх. внутр. медицины. 2013. Т. 4, № 12. С. 5-15.

3. Buxton A.E., Waks J.W., Shen C. et al. Risk stratification for sudden cardiac death in North America - current perspectives // J. Electrocardiol. 2016.

4. Garg A. Primary prevention of sudden cardiac death - Challenge the guidelines // Indian Heart J. 2015. Vol. 67, N 3. P. 203-206.

5. Zhang S. Sudden cardiac death in China: current status and future perspectives // Europace. 2015. N 17, Suppl 2. ii14-8.

6. European detailed mortality database (DMDB) [Internet]. Available from:: http://data.euro.who.int/dmdb/ (cited 2016 Jan 30).

7. Winkel B.G., Risgaard B., Bjune T. et al. Gender differences in sudden cardiac death in the young-a nationwide study // BMC Cardiovasc. Disord. 2017. Vol. 17, N 1. P. 19.

8. Faragli A., Underwood K., Priori S.G. et al. Is There a Role for Genetics in the Prevention of Sudden Cardiac Death? // J. Cardiovasc. Electrophysiol. 2016.

9. Kunutsor S.K., Zaccardi F., Karppi J. et al. Is High Serum LDL/HDL Cholesterol Ratio an Emerging Risk Factor for Sudden Cardiac Death? Findings from the KIHD Study // J. Atheroscler. Thromb. 2016.

10. Tanaka F., Makita S., Onoda T. et al. Predictive value of lipoprotein indices for residual risk of acute myocardial infarction and sudden death in men with low-density lipoprotein cholesterol levels №120 mg/dl // Am. J. Cardiol. 2013. Vol. 112, N 8. P. 1063-1068.

11. Kozdag G., Ertas G., Emre E. et al. Low serum triglyceride levels as predictors of cardiac death in heart failure patients // Tex. Heart Inst. J. 2013. Vol. 40, N 5. P. 521-528.

12. Kunutsor S.K., Khan H., Nyyssönen K. et al. Lipoprotein(a) and risk of sudden cardiac death in middle-aged Finnish men: A new prospective cohort study // Int. J. Cardiol. 2016. N 220. P. 718-725.

13. Marian A.J. The enigma of genetics etiology of atherosclerosis in the post-GWAS era // Curr. Atheroscler. Rep. 2012. Vol. 14, N 4. P. 295-299.

14. Maroufi N.F., Farzaneh K., Alibabrdel M. et al. Taq1B Polymorphism of Cholesteryl Ester Transfer Protein (CETP) and Its Effects on the Serum Lipid Levels in Metabolic Syndrome Patients // Biochem. Genet. 2016. Vol. 54, N 6. P. 894-902.

15. Ganesan M., Nizamuddin S., Katkam S.K. et al. c.*84G>A Mutation in CETP Is Associated with Coronary Artery Disease in South Indians // PLoS One. 2016. Vol. 11, N 10. e0164151.

16. Agapakis D., Savopoulos C., Kypreos K.E. et al. Association of the CETP Taq1B and LIPG Thr111Ile Polymorphisms with Glycated Hemoglobin and Blood Lipids in Newly Diagnosed Hyperlipidemic Patients // Can. J. Diabetes. 2016. Vol. 40, N 6. P. 515-520.

17. Cyrus C., Vatte C., Al-Nafie A. et al. The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians // Hum. Genomics. 2016. N 10. P. 8.

18. Porchay-Baldérelli I., Péan F., Bellili N. et al. The CETP TaqIB polymorphism is associated with the risk of sudden death in type 2 diabetic patients // Diabetes Care. 2007. Vol. 30, N 11. P. 2863-2867.

19. Blankenberg S., Rupprecht H.J., Bickel C. et al. Common genetic variation of the cholesteryl ester transfer protein gene strongly predicts future cardiovascular death in patients with coronary artery disease // J. Am. Coll. Cardiol. 2003. N 41. P. 1983-1989.

20. Dose J., Huebbe P., Nebel F. et al. APOE genotype and stress response - a mini review // Lipids Health Dis. 2016. N 15. P. 121.

21. Machal J., Vasku A., Hlinomaz O. et al. Apolipoprotein E polymorphism is associated with both number of diseased vessels and extent of coronary artery disease in Czech patients with CAD // Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2012. Vol. 156, N 2. P. 151-158.

22. Wintjens R., Bozon D., Belabbas K. et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France // J. Lipid. Res. 2016. Vol. 57, N 3. P. 482-491.

23. Tyynelä P., Goebeler S., Ilveskoski E. et al. Age-dependent interaction of apolipoprotein E gene with eastern birthplace in Finland affects severity of coronary atherosclerosis and risk of fatal myocardial infarction-Helsinki Sudden Death Study // Ann. Med. 2013. Vol. 45, N 3. P. 213-219.

24. El-Lebedy D., Raslan H.M., Mohammed A.M. et al. Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease // Cardiovasc. Diabetol. 2016. N 15. P. 12.

25. Koopal C., Geerlings M.I., Muller M. et al. The relation between apolipoprotein E (APOE) genotype and peripheral artery disease in patients at high risk for cardiovascular disease // Atherosclerosis. 2016. N 246. P. 187-192.

26. Takeichi S., Nakajima Y., Osawa M. et al. The possible role of remnant-like particles as a risk factor for sudden cardiac death // Int. J. Legal. Med. 1997. Vol. 110, N 4. P. 213-219.

27. Wang H., Zhang D., Ling J. et al. Gender specific effect of LIPC C-514T polymorphism on obesity and relationship with plasma lipid levels in Chinese children // J. Cell. Mol. Med. 2015. Vol. 19, N 9. P. 2296-2306.

28. Posadas-Sánchez R., Ocampo-Arcos W.A., López-Uribe Á.R. et al. Hepatic lipase (LIPC) C-514T gene polymorphism is associated with cardiometabolic parameters and cardiovascular risk factors but not with fatty liver in Mexican population // Exp. Mol. Pathol. 2015. Vol. 98, N 1. P. 93-98.

29. Verdier C., Ruidavets J.B., Bongard V. et al. Association of hepatic lipase -514T allele with coronary artery disease and ankle-brachial index, dependence on the lipoprotein phenotype: the GENES study // PLoS One. 2013. Vol. 8, N 7. e67805.

30. Fan Y., Lehtimaki T., Rontu R. et al. Age-dependent association between hepatic lipase gene C-480T polymorphism and the risk of pre-hospital sudden cardiac death: The Helsinki Sudden Death Study // Atherosclerosis. 2007. N 192. P. 421-427.

31. Deursen D., Leeuwen M., Vaulont S. et al. Upstream Stimulatory Factors 1 and 2 activate the human hepatic lipase promoter via E-box dependent and independent mechanisms // Biochim. Biophys. Acta. 2009. N 1791. P. 229-237.

32. Brown M., Goldstein J. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor // Cell. 1997. Vol. 89, N 3. Р. 331-340.

33. Fan Y.M., Karhunen P., Levula M. et al. Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death // Thrombosis J. 2008. N 6. P. 17.

34. Liu F.H., Song J.Y., Ma J. et al. Association of rs2228314 polymorphism in SREBP2 with serum lipid levels and obesity among children and adolescents // Beijing Da Xue Xue Bao. 2014. Vol. 46, N 3. P. 355-359.

35. Liu X., Li Y., Lu X. et al. Interactions among genetic variants from SREBP2 activating-related pathway on risk of coronary heart disease in Chinese Han population // Atherosclerosis. 2010. Vol. 208, N 2. P. 421-426.

36. Moon Y.A. The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis // Endocrinol. Metab. (Seoul). 2017.

37. Di Taranto M.D., Staiano A., D’Agostino M.N. et al. Association of USF1 and APOA5 polymorphisms with familial combined hyperlipidemia in an Italian population // Mol. Cell. Probes. 2015. Vol. 29, N 1. P. 19-24

38. Niemiec P., Nowak T., Iwanicki T. et al. The rs2516839 Polymorphism of the USF1 Gene May Modulate Serum Triglyceride Levels in Response to Cigarette Smoking // Int. J. Mol. Sci. 2015. Vol. 16, N 6. P. 13203-13216.

39. Kristiansson K., Ilveskoski E., Lehtimäki T. et al. Association analysis of allelic variants of USF1 in coronary atherosclerosis // Arterioscler. Thromb. and Vascular. Biol. 2008. N 28. P. 983-989.

40. Larsen M.K., Nissen P.H., Kristensen I.B. et al. Sudden cardiac death in young adults: environmental risk factors and genetic aspects of premature atherosclerosis // J. Forensic. Sci. 2012. Vol. 57, N 3. P. 658-662.

41. Gretarsdottir S., Helgason H., Helgadottir A. et al. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease // PLoS Genet. 2015. Vol. 11, N 9. e1005379.

42. Abd El-Aziz T.A., Mohamed R.H. LDLR, ApoB and ApoE genes polymorphisms and classical risk factors in premature coronary artery disease // Gene. 2016. Vol. 590, N 2. P. 263-269.

43. Fairoozy R.H., White J., Palmen J. et al. Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD // PLoS One. 2016. Vol. 11, N 2. e0167676.


Review

For citations:


Ivanova A.A. MOLECULAR-GENETICAL MARKERS OF LIPID ABNORMALITIES AND SUDDEN CARDIAC DEATH. Ateroscleroz. 2017;13(2):33-40. (In Russ.)

Views: 212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)