Preview

Ateroscleroz

Advanced search

Pathogenetic mechanisms of atherosclerosis development in athletes

https://doi.org/10.15372/ATER20200411

Abstract

Aim of the study was to reveal the relationship between the performance of high-intensity physical activity and the development of endothelial dysfunction in people involved in professional sports. The development of endothelial dysfunction as one of the main markers of atherosclerotic damage to the vascular wall in athletes is an urgent problem in modern medicine in connection with the asymptomatic course and unpredictability of the development of cardiovascular complications.

Material and methods. The publications on the topic of the scientific review from 2010 to 2020 were analyzed. The electronic databases of the Google Academy (https://scholar.google.ru/), UpToDate (www.uptodate.com), Oxford Medicine Online (https://oxfordmedicine.com/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), scientific electronic library «Cyberleninka» and foreign journals Springer (https://www.springer.com/gp), Journal of the American College of Cardiology (https://imaging.onlinejacc.org/).

Results. Recent foreign and domestic studies show a relatively high relationship between the level of physical activity and the development of coronary atherosclerosis in professional athletes.

Conclusion. When performing prolonged and excessive physical exertion, trained athletes often experience 
oxidative stress, the presence of which causes the development of endothelial dysfunction, which from modern positions is a key link in the pathogenesis of atherosclerosis. Further study of the mechanism of atherogenesis will contribute to the use of new diagnostic methods in predicting the disease at an early stage and treating it, thus preserving the health of an athlete.

About the Authors

Ya. A. Pushkina
National Research Ogarev Mordovia State University
Russian Federation
430005, Saransk, Bolshevistskaya str., 68


I. V. Sychev
National Research Ogarev Mordovia State University
Russian Federation
430005, Saransk, Bolshevistskaya str., 68


L. N. Goncharova
National Research Ogarev Mordovia State University
Russian Federation
430005, Saransk, Bolshevistskaya str., 68


N. P. Sergutova
National Research Ogarev Mordovia State University
Russian Federation
430005, Saransk, Bolshevistskaya str., 68


O. I. Shepeleva
National Research Ogarev Mordovia State University
Russian Federation
430005, Saransk, Bolshevistskaya str., 68


References

1. Eijsvogels T.M., Molossi S., Lee D.C., Emery M.S., Thompson P.D. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J. Am. Coll. Cardiol., 2016; 67 (3): 316–329. doi: 10.1016/j.jacc.2015.11.034

2. Stamler J. Epidemioligy of coronary heart disease. Med. Clin. North Am., 1973; 57 (1): 5–46. doi: 10.1016/s0025-7125(16)32300-8

3. Eijsvogels T.M., Thompson P.D. Exercise is medicine: at any dose? JAMA, 2015; 314 (18): 1915–1916. doi: 10.1001/jama.2015.10858

4. Lee D.C., Pate R.R., Lavie C.J., Sui X., Church T.S., Blair S.N. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol., 2014; 64 (5): 472–481. doi:10.1016/j.jacc.2014.04.058

5. Wen C.P., Wai J.P., Tsai M.K., Yang Y.C., Cheng T.Y., Lee M.C., Chan H.T., Tsao C.K., Tsai S.P., Wu X. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet, 2011; 378 (9798): 1244–1253. doi: 10.1016/S0140-6736(11)60749-6

6. Urschel K., Cicha I. TNF-α in the cardiovascular system: from physiology to therapy. Int. J. Interferon Cytokine Mediat. Res., 2015; 7: 9–25. doi: 10.2147/IJICMR.S64894

7. Mashkovskiy E.V., Bogova O.T., Achkasov E.E., Sederholm L.A. The influence of sports history on the clinical and echocardiographic features of the course of coronary heart disease. Sports Medicine: Science and Practice, 2013; 2 (11): 41–44. (In Russ.).

8. Lubysheva L.I. Contemporary sports: problems and solutions. Human. Sport. Medicine, 2014; 14 (1): 12–14. (In Russ.).

9. Gorbenko A.V., Skirdenko Yu.P., Nikolaev N.A., Zamakhina O.V., Sherstyuk S.A., Ershov A.V. Physiological or pathological hypertrophy of athlete’s heart syndrome. Circulation Pathology and Cardiac Surgery, 2020; 24(2): 16–25. (In Russ.).

10. Abbasov I.M., Skrebov R.V., Kuzmichev D.E., Misnikov P.V. Modern concepts of the causes of sudden death, including in sports, and their forensic medical diagnostics. Ugra Health Care: Experience and Innovations, 2020; 1: 67–81. (In Russ.).

11. Bockeria L.A., Bockeria O.L., Le T.G. Sudden sportsmen death. Annals of Arrhythmology, 2009; 6(2): 24–39. (In Russ.).

12. Berdowski J., de Beus M.F., Blom M., Bardai A., Bots M.L., Doevendans P.A., Grobbee D.E., Tan H.L., Tijssen J.G., Koster R.W., Mosterd A. Exercise-related out-of-hospital cardiac arrest in the general population: incidence and prognosis. Eur. Heart J., 2013; 34 (47): 3616–3623. doi: 10.1093/eurheartj/eht401

13. Oleynik S.A., Gorchakova N.A., Gunina L. M., Gudivok Ya.S. Pharmacology of sports. Kiev: Olymp. lit., 2010. P. 640. (In Russ.).

14. Puzin S.N. Achkasov E.E., Bogova O.T., Mashkovsky E.V. Cardiovascular system diseases in professional athletes, 2012; 3: 55-57. (In Russ.).

15. McHugh C., Hind K., Davey D., Wilson F. Cardiovascular health of retired field-based athletes: a systematic review and meta-analysis. Orthop. J. Sports Med., 2019; 7 (8): 2325967119862750. doi: 10.1177/232596711986275

16. DeFina L.F., Radford N.B., Barlow C.E., Willis B.L., Leonard D., Haskell W.L., Farrell S.W., Pavlovic A., Abel K., Berry J.D., Khera A., Levine B.D. Association of all-cause and cardiovascular mortality with high levels of physical activity and concurrent coronary artery calcification. JAMA Cardiol., 2019; 4 (2): 174–181. doi: 10.1001/jamacardio.2018.4628

17. Vasilenko V.S., Semenova E.S., Semenova Yu.B. Blood lipids in athletes depending on the orientation of the training process. Pediatr, 2017; 8(2): 10–14. (In Russ.).

18. Aengevaeren V.L., Mosterd A., Sharma S., Braber T.L., Thompson P.D., Velthuis B.K., Eijsvogels T.M.H. Coronary atherosclerosis in athletes: exploring the role of sporting discipline. JACC Cardiovasc. Imaging, 2019; 12 (8): 1587–1589. doi: 10.1016/j.jcmg.2019.01.002

19. Harmon K.G., Drezner J.A., Wilson M.G., Sharma S. Incidence of sudden cardiac death in athletes: a stateof-the-art review. Heart, 2014; 100 (16): 1227–1234. doi: 10.1136/heartjnl-2014-093872.rep

20. Aengevaeren V.L., Mosterd A., Braber T.L., Prakken N.H.J., Doevendans P.A., Grobbee D.E., Thompson P.D., Eijsvogels T.M.H., Velthuis B.K. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation, 2017; 136 (2): 138–148. doi: 10.1161/CIRCULATIONAHA.117.027834

21. Merghani A., Maestrini V., Rosmini S., Cox A.T., Dhutia H., Bastiaenan R., David S., Yeo T.J., Narain R., Malhotra A., Papadakis M., Wilson M.G., Tome M., AlFakih K., Moon J.C., Sharma S. Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation, 2017; 136 (2): 126–137. doi: 10.1161/CIRCULATIONAHA.116.026964

22. Braber T.L., Mosterd A., Prakken N.H., Rienks R., Nathoe H.M., Mali W.P., Doevendans P.A., Backx F.J., Bots M.L., Grobbee D.E., Velthuis B.K. Occult coronary artery disease in middle-aged sportsmen with a low cardiovascular risk score: The Measuring Athlete's Risk of Cardiovascular Events (MARC) study. Eur. J. Prev. Cardiol., 2016; 23 (15): 1677–1684. doi: 10.1177/2047487316651825

23. Smolenskiy A.V., Mikhaylova A.V., Borisova Yu.A. Belotserkovskiy Z.B., Lyubina B.G., Tatarinova A.Yu. The specific features of a physiological remodeling of an athletes heart. Physiotherapy and Sports Medicine, 2012; 6(102): 9–14. (In Russ.).

24. Hawley J.A., Hargreaves M., Joyner M.J., Zierath J.R. Integrative biology of exercise. Cell, 2014; 159 (4): 738–749. doi: 10.1016/j.cell.2014.10.029

25. Franck G., Even G., Gautier A., Salinas M., Loste A., Procopio E., Gaston A.T., Morvan M., Dupont S., Deschildre C., Berissi S., Laschet J., Nataf P., Nicoletti A., Michel J.B., Caligiuri G. Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis. Eur. Heart J., 2019; 40: 928–937. doi: 10.1093/eurheartj/ehy822

26. Bershova T.V., Bakanov M.I., Smirnov I.E., Sanfirova V.M., Korneeva I.T., Polyakov S.D., Soloveva Yu.V. Changes in the functional state of the vascular endothelium in young athletes of varying skill levels. Rossiiskiy Pediatricheskiy Zhurnal, 2016; 19(1): 14–19. (In Russ.). doi: 10.18821/1560-9561-2016-19(1)-14-19

27. Shabrov A.V., Apresyan A.G., Dobkes A.L., Ermolov S.U., Ermolova T.V., Manasyan S.G., Serdyukov S.V. Current Methods of Endothelial Dysfunction Assessment and their Possible Use in the Practical Medicine. Rational Pharmacotherapy in Cardiology 2016; 12(6): 733–742. (In Russ). doi: 10.20996/1819-6446-2016-12-6-733-742

28. Dyakova E.Yu., Kapilevich L.V., Zakharova A.N., Kabachkova A.V., Kironenko T.A., Orlov S.N. Plasma concentrations of endothelial nitric oxide synthase (enos) after different physical exercises. Bulletin of Siberian Medicine, 2017; 16(1): 20–26. (In Russ.). doi: 10.20538/1682-0363-2017-1-20-26

29. Rogozkin V.А., Аkhmetov I.I., Аstratenkova I.V. Perspectives of DNA-technologies usage in sport. Теоriya i praktika fiz. kultury, 2006; 7: 45–47. (In Russ.).

30. Green D.J., Dawson E.A., Groenewoud H.M., Jones H., Thijssen D.H. Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension, 2014; 63 (2): 376–382. doi: 10.1161/HYPERTENSIONAHA.113.02044

31. Linde E.V., Akhmetov I.I., Ordzhonikidze Z.G. Genetic factors and the formation of left ventricular hypertrophy in elite athletes. Science and Sports: Current Trends, 2014; 2 (3): 32–42].

32. Didur M.D., Cherednichenko D.V., Lebedev V.N. Endothelial dysfunction of the high-class athletes. Sportivnaya Meditsina, 2012; 2: 26–30. (In Russ.)

33. Sukhovolskaya M.A., Subbotina T.N. The concentration of homocysteine in the blood serum of athletes-dischargers with mutations in the MTHFR and MTR genes. Hematology and Transfusiology, 2012; 57 (Suppl.): 81. (In Russ.).

34. Lee E.C., Fragala M.S., Kavouras S.A., Queen R.M., Pryor J.L., Casa D.J. Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. J. Strength Cond. Res., 2017; 31 (10): 2920–2937. doi:10.1519/JSC.0000000000002122

35. Pinto A.P., da Rocha A.L., Kohama E.B., Gaspar R.C., Simabuco F.M., Frantz F.G., de Moura L.P., Pauli J.R., Cintra D.E., Ropelle E.R., de Freitas E.C., da Silva A.SR. Exhaustive acute exercise-induced ER stress is attenuated in IL-6 knockout mice. J. Endocrinol., 2019; 240 (2): 181–193. doi: 10.1530/JOE-18-0404

36. Klimushina M.V., Smetnev S.A., Kutsenko V.A., Meshkov A.N., Gumanova N.G., Metelskaya V.A. Study of the relationship between polymorphic markers of the IL-6 and IL-6 receptor genes with the development of coronary atherosclerosis. Cardiovascular Therapy and Prevention, 2019; (S1): 89–89. (In Russ.).

37. da Rocha A.L., Pinto A.P., Kohama E.B., Pauli J.R., de Moura L.P., Cintra D.E., Ropelle E.R., da Silva A.S. The proinflammatory effects of chronic excessive exercise. Cytokine, 2019; 119: 57–61. doi: 10.1016/j.cyto.2019.02.016

38. Gordeeva M.A., Babaeva A.R., Emelyanova A.L., Davydov S.I. Assess ment of the cytokine profile in patients with various types of acute coronary syndrome and chronic forms of ischemic heart disease. Cytokines and Inflammation, 2014; 13(2): 27–33. (In Russ.).

39. di Pietro N, Formoso G., Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul. Pharmacol., 2016; 84: 1–7. doi: 10.1016/j.vph.2016.05.013

40. Kaunina D.V., Vikulov A.D. The physical working capacity and blood lipids composition of highly qualified swimmers blood. Yaroslavl Pedagogical Bulletin, 2012; 3(4): 141–144. (In Russ.).

41. Dutova V.S., Saranchina J.V., Karpova M.R., Kilina O.Yu., Polshcha N.G., Kulakova T.S., Khanarin N.V. Cytokines and atherosclerosis – new research directions. Bulletin of Siberian Medicine. 2018; 17 (4): 199–208. (In Russ.). doi: 10.20538/1682-0363-2018-4-199-207

42. Budko A.N., Moroz E.A., Nekhvyadovich A.I. Analysis of modern biochemical methods of the cardiovascular systems overexertion diagnostics of athletes. Applied Sports Science, 2018; 2(8): 103–108. (In Russ.).

43. Cherednichenko D.V., Didur M.D., Lebedev V.N. Proatherogenic and antiatherogenic lipoproteins in high-class athletes. Sports Medicine, 2013; 2: 23–26. (In Russ.).

44. Vikulov A.D., Margazin V.A., Kaunina D.V. Low-density lipoproteins and physical performance of athletes-swimmers. Treatment. Physical Education and Sports. Medicine, 2014; 1 (121): 10–16. (In Russ.).

45. Gruzdeva O.V., Barbarash O.L., Palicheva E.I., Akbasheva O.E., Dyleva Yu.A., Salakhova A.S., Shurygina E.A., Kashtalap V.V., Tavluyeva E.V., Barbarash L.S. Determination of oxidatively modified lipoproteins and antibodies to them in complicated course of myocardial infarction with ST segment elevation. Clinical Laboratory Diagnostics, 2011; 7: 14–17. (In Russ.).

46. Lopatin Z.V., Vasilenko V.S., Karpovskaya E.B. Role of endothelium damage factors in the pathogenesis of cardiomyopathy surge in athletes sports. Pediatrician (St. Petersburg), 2018; 9 (6): 57–62. (In Russ.). doi: 10.17816/PED9657-62

47. Vasilenko V.S., Lopatin Z.V. Oxidative stress and endothelial dysfunction in athletes as a risk factor for overexertion cardiomyopathy. Modern Problems of Science and Education, 2019; 1. (In Russ.).

48. Kologrivova V.V., Zakharova A.N., Pakhomova E.V., Vasilyev V.N., Kapilevich L.V. The characteristic of endothelium-dependent vasodilatation in athletes and untrained volunteers. Bulletin of Siberian Medicine, 2018; 17 (2): 42–46. (In Russ.). doi: 10.20538/1682-0363-2018-4-42-46

49. Palombo C., Kozakova M. Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vasc. Pharmacol., 2016; 77: 1–7. doi: 10.1016/j.vph.2015.11.083

50. Kozlov V.A. Free extracellular DNA in normal state and under pathological conditions. Medical immunology (Russia), 2013; 15 (5): 399–412. (In Russ.). doi: 10.15789/1563-0625-2013-5-399-412

51. Fatouros I.G., Jamurtas A.Z. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J. Inflamm. Res., 2016; 9: 175–186. doi: 10.2147/JIR. S114635

52. Breitbach S., Tug S., Simon P. Circulating CellFree DNA. Sports Med., 2012; 42 (7): 565–586. doi: 10.2165/11631380- 000000000-00000

53. Otteva E.N., Klinkova E.V., Garbuzova O.G., Isakova V.N., Bandurko E.V. Arterial rigidity, a marker of cardiovascular diseases. Clinical Medicine, 2012; 90 (1): 4–12. (In Russ.).

54. Pokrywka A., Zembron-Lacny A., Baldy-Chudzik K., Orysiak J., Sitkowski D., Banach M. The influence of hypoxic physical activity on cfDNA as a new marker of vascular inflammation. Arch. Med. Sci., 2015; 11 (6): 1156–1163. doi:10.5114/aoms.2015.56341

55. Vittori L.N., Tarozzi A., Latessa P.M. Circulating cell-free DNA in physical activities. Methods Mol. Biol., 2019; 1909: 183–197. doi: 10.1007/978-1-4939-8973-7_14

56. Bachi A.L., Sierra A.P., Rios F.J., Gonзalves D.A., Ghorayeb N., Abud R.L., Victorino A.B., Dos Santos J.M., Kiss M.A., Pithon-Curi T.C., Vaisberg M. Athletes with higher VO2max present reduced oxLDL after a marathon race. BMJ Open Sport Exerc. Med., 2015; 1 (1). doi: 10.1136/ bmjsem-2015-000014

57. Bohm P., Scharhag J., Meyer T. Data from a nationwide registry on sports-related sudden cardiac deaths in Germany. Eur. J. Prev. Cardiol., 2016; 23(6): 649–656. doi: 10.1177/204748731559408


Review

For citations:


Pushkina Ya.A., Sychev I.V., Goncharova L.N., Sergutova N.P., Shepeleva O.I. Pathogenetic mechanisms of atherosclerosis development in athletes. Ateroscleroz. 2020;16(4):85-92. (In Russ.) https://doi.org/10.15372/ATER20200411

Views: 1049


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)