Preview

Атеросклероз

Расширенный поиск

Эффекты биомаркеров, секретируемых висцеральными адипоцитами, на сердечно-сосудистую систему

https://doi.org/10.15372/ATER20200106

Аннотация

В литературном обзоре освещены результаты проведенных в мире исследований последних лет, посвященных изучению биохимических факторов, секретируемых висцеральными адипоцитами и влияющих на деятельность сердечно-сосудистой системы. Описаны результаты исследований таких биомолекул, как лептин, адипонектин, резистин, фактор некроза опухоли альфа, интерлейкин-1, интерлейкин-6, интерлейкин-8, интерлейкин-10, тканевой фактор, липопротеинлипаза, аполипопротеин Е, факторы комплемента, ингибитор активатора плазминогена 1 типа, висфатин, протеины ренин-ангиотензиновой системы, апелин, оментин, моноцитарно-хемоаттрактантный протеин 1 типа, ретинол-связывающий протеин 4 типа.

Об авторах

В. И. Облаухова
НИИ терапии и профилактической медицины – филиал ФГБНУ ФИЦ Институт цитологии и генетики СО РАН
Россия

Облаухова Вероника Игоревна – аспирант

630089, г. Новосибирск, ул. Бориса Богаткова, 175/1



Ю. И. Рагино
НИИ терапии и профилактической медицины – филиал ФГБНУ ФИЦ Институт цитологии и генетики СО РАН
Россия

Рагино Юлия Игоревна – д-р мед. наук, проф. РАН, чл.-корр. РАН, руководитель НИИТПМ – филиал ИЦиГ СО РАН

630089, г. Новосибирск, ул. Бориса Богаткова, 175/1



Список литературы

1. Schäffler A., Müller-Ladner U., Schölmerich J., et al. Role of adipose tissue as an inflammatory organ in human diseases // Endocrine Rev. 2006. Vol. 27, N 5. P. 449–467. DOI: 10.1210/er.2005-0022

2. Galic S., Oakhill J.S., Steinberg G.R. Adipose tissue as an endocrine organ // Mol. Cel. Endocrinol. 2010. Vol. 316, N 2. P. 129–139. DOI: 10.1016/j.mce.2009.08.018

3. Hausman G.J., Barb C.R., Lents C.A. Leptin and reproductive function // Biochimie. 2012. Vol. 94, N 10. P. 2075–2081. DOI: 10.1016/j.biochi.2012.02.022

4. Sweeney G. Cardiovascular effects of leptin // Nat. Rev. Cardiol. 2009. Vol. 7, N 1. P. 22–29. DOI:10.1038/nrcardio.2009.224

5. Singh M., Bedi U.S., Singh P.P., et al. Leptin and the clinical cardiovascular risk // Int. J. Cardiol. 2010. Vol. 140, N 3. P. 266–271. DOI: 10.1016/j.ijcard.2009.07.019

6. Sierra-Johnson J., Romero-Corral A., Lopez-Jimenez F., et al. Relation of increased leptin concentrations to history of myocardial infarction and stroke in the united states population // The Am. J. Cardiol. 2007. Vol. 100, N 2. P. 234–239. DOI: 10.1016/j.amjcard.2007.02.088

7. Momin A.U., Melikian N., Shah A.M., et al. Leptin is an endothelial independent vasodilator in humans with coronaryartery disease: evidence for tissue specificity of leptin resistance // Eur. Heart J. 2006. Vol. 27. P. 2294–2299. DOI:10.1093/eurheartj/ehi831.

8. Wolk R., Deb A., Caplice N.M., et al. Leptin receptor and functional effects of leptin in human endothelial progenitor cells // Atherosclerosis. 2005. Vol. 183. P. 131–139. DOI: 10.1016/j.atherosclerosis.2005.03.048

9. Kappelle P.J.W. H., Dullaart R.P.F., van Beek A.P., et al. The plasma leptin/adiponectin ratio predicts first cardiovascular event in men: a prospective nested case–control study // Eur. J. Int. Med. 2012. Vol. 23, N 8. P. 755–759. DOI: 10.1016/j.ejim.2012.06.013

10. Zhu W., Cheng K.K., Vanhoutte P.M., et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention // Clin. Sci. (Lond). 2008. Vol. 114. P. 361–374. DOI: 10.1042/CS20070347

11. Lara-Castro C., Luo N., Wallace P., et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster // Diabetes. 2006. Vol. 55, N 1. P. 249– 259. DOI: 10.2337/diabetes.55.01.06.db05-1105

12. Koenig W., Khuseyinova N., Baumert J., et al. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany // J. Am. Coll. Cardiol. 2006. Vol. 48. P. 1369–1377. DOI: 10.1016/j.jacc.2006.06.053

13. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men // J. Clin. Endocrinol. Metab. 2007. Vol. 92. P. 571–576. DOI: 10.1210/jc.2006-1067

14. Torigoe M., Matsui H., Ogawa Y., et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men // Clin. Endocrinol. (Oxf). 2007. Vol. 67. P. 276–281. DOI:10.1111/j.1365-2265.2007.02876.x

15. Pilz S., Horejsi R., Moller R., et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 4792–4796. DOI:10.1210/jc.2005-0167

16. Lo J., Dolan S.E., Kanter J.R., et al. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women // J. Clin. Endocrinol. Metab. 2006. Vol. 91. P. 1677–1682. DOI: 10.1210/jc.2005-2775

17. Nilsson P.M., Engstrom G., Hedblad B., et al. Plasma adiponectin levels in relation to carotid intima media thickness and markers of insulin resistance // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2758– 2762. DOI: 10.1161/01.ATV.0000249638.01416.4b

18. Norata G.D., Raselli S., Grigore L., et al. Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery // Stroke. 2007. Vol. 38. P. 2844–2846. DOI: 10.1161/STROKEAHA.107.485540

19. Kotani K., Shimohiro H., Sakane N. The relationship between leptin: adiponectin ratio and carotid intimamedia thickness in asymptomatic females // Stroke. 2008. Vol. 39. P. e32–e33. DOI:10.1161/STROKEAHA.107.505669

20. Kotani K., Sakane N., Saiga K., Kurozawa Y. Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness // Diabetologia. 2005. Vol. 48. P. 2684–2686. DOI:10.1007/s00125-005-0015-4

21. Mitsuhashi H., Yatsuya H., Tamakoshi K., et al. Adiponectin level and left ventricular hypertrophy in Japanese men // Hypertension. 2007. Vol. 49. P. 1448–1454. DOI: 10.1161/HYPERTENSIONAHA.106.079509

22. progenitor cells // Atherosclerosis. 2005. Vol. 183. P. 131–139. DOI: 10.1016/j.atherosclerosis.2005.03.048

23. Kappelle P.J.W. H., Dullaart R.P.F., van Beek A.P., et al. The plasma leptin/adiponectin ratio predicts first cardiovascular event in men: a prospective nested case–control study // Eur. J. Int. Med. 2012. Vol. 23, N 8. P. 755–759. DOI: 10.1016/j.ejim.2012.06.013

24. Zhu W., Cheng K.K., Vanhoutte P.M., et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention // Clin. Sci. (Lond). 2008. Vol. 114. P. 361–374. DOI: 10.1042/CS20070347

25. Lara-Castro C., Luo N., Wallace P., et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster // Diabetes. 2006. Vol. 55, N 1. P. 249– 259. DOI: 10.2337/diabetes.55.01.06.db05-1105

26. Koenig W., Khuseyinova N., Baumert J., et al. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany // J. Am. Coll. Cardiol. 2006. Vol. 48. P. 1369–1377. DOI: 10.1016/j.jacc.2006.06.053

27. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men // J. Clin. Endocrinol. Metab. 2007. Vol. 92. P. 571–576. DOI: 10.1210/jc.2006-1067

28. Torigoe M., Matsui H., Ogawa Y., et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men // Clin. Endocrinol. (Oxf). 2007. Vol. 67. P. 276–281. DOI:10.1111/j.1365-2265.2007.02876.x

29. Pilz S., Horejsi R., Moller R., et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 4792–4796. DOI:10.1210/jc.2005-0167

30. Lo J., Dolan S.E., Kanter J.R., et al. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women // J. Clin. Endocrinol. Metab. 2006. Vol. 91. P. 1677–1682. DOI: 10.1210/jc.2005-2775

31. Nilsson P.M., Engstrom G., Hedblad B., et al. Plasma adiponectin levels in relation to carotid intima media thickness and markers of insulin resistance // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2758– 2762. DOI: 10.1161/01.ATV.0000249638.01416.4b

32. Norata G.D., Raselli S., Grigore L., et al. Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery // Stroke. 2007. Vol. 38. P. 2844–2846. DOI: 10.1161/STROKEAHA.107.485540

33. Kotani K., Shimohiro H., Sakane N. The relationship between leptin: adiponectin ratio and carotid intimamedia thickness in asymptomatic females // Stroke. 2008. Vol. 39. P. e32–e33. DOI:10.1161/STROKEAHA.107.505669

34. Kotani K., Sakane N., Saiga K., Kurozawa Y. Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness // Diabetologia. 2005. Vol. 48. P. 2684–2686. DOI:10.1007/s00125-005-0015-4

35. Mitsuhashi H., Yatsuya H., Tamakoshi K., et al. Adiponectin level and left ventricular hypertrophy in Japanese men // Hypertension. 2007. Vol. 49. P. 1448–1454. DOI: 10.1161/HYPERTENSIONAHA.106.079509

36. progenitor cells // Atherosclerosis. 2005. Vol. 183. P. 131–139. DOI: 10.1016/j.atherosclerosis.2005.03.048

37. Kappelle P.J.W. H., Dullaart R.P.F., van Beek A.P., et al. The plasma leptin/adiponectin ratio predicts first cardiovascular event in men: a prospective nested case–control study // Eur. J. Int. Med. 2012. Vol. 23, N 8. P. 755–759. DOI: 10.1016/j.ejim.2012.06.013

38. Zhu W., Cheng K.K., Vanhoutte P.M., et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention // Clin. Sci. (Lond). 2008. Vol. 114. P. 361–374. DOI: 10.1042/CS20070347

39. Lara-Castro C., Luo N., Wallace P., et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster // Diabetes. 2006. Vol. 55, N 1. P. 249– 259. DOI: 10.2337/diabetes.55.01.06.db05-1105

40. Koenig W., Khuseyinova N., Baumert J., et al. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany // J. Am. Coll. Cardiol. 2006. Vol. 48. P. 1369–1377. DOI: 10.1016/j.jacc.2006.06.053

41. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men // J. Clin. Endocrinol. Metab. 2007. Vol. 92. P. 571–576. DOI: 10.1210/jc.2006-1067

42. Torigoe M., Matsui H., Ogawa Y., et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men // Clin. Endocrinol. (Oxf). 2007. Vol. 67. P. 276–281. DOI:10.1111/j.1365-2265.2007.02876.x

43. Pilz S., Horejsi R., Moller R., et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 4792–4796. DOI:10.1210/jc.2005-0167

44. Lo J., Dolan S.E., Kanter J.R., et al. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women // J. Clin. Endocrinol. Metab. 2006. Vol. 91. P. 1677–1682. DOI: 10.1210/jc.2005-2775

45. Nilsson P.M., Engstrom G., Hedblad B., et al. Plasma adiponectin levels in relation to carotid intima media thickness and markers of insulin resistance // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2758– 2762. DOI: 10.1161/01.ATV.0000249638.01416.4b

46. Norata G.D., Raselli S., Grigore L., et al. Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery // Stroke. 2007. Vol. 38. P. 2844–2846. DOI: 10.1161/STROKEAHA.107.485540

47. Kotani K., Shimohiro H., Sakane N. The relationship between leptin: adiponectin ratio and carotid intimamedia thickness in asymptomatic females // Stroke. 2008. Vol. 39. P. e32–e33. DOI:10.1161/STROKEAHA.107.505669

48. Kotani K., Sakane N., Saiga K., Kurozawa Y. Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness // Diabetologia. 2005. Vol. 48. P. 2684–2686. DOI:10.1007/s00125-005-0015-4

49. Mitsuhashi H., Yatsuya H., Tamakoshi K., et al. Adiponectin level and left ventricular hypertrophy in Japanese men // Hypertension. 2007. Vol. 49. P. 1448–1454. DOI: 10.1161/HYPERTENSIONAHA.106.079509

50. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases // Blood. 2011. Vol. 117. P. 3720–3732. DOI: 10.1182/blood-2010-07-273417

51. Dinarello C.A, Simon A., van der Meer J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases // Nat. Rev. Drug. Discov. 2012. Vol. 11. P. 633–652. DOI:10.1038/nrd3800

52. March C.J., Mosley B., Larsen A., et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs // Nature. 1985. Vol. 315, N 6021. P. 641–647. DOI: 10.1038/315641a0

53. Auron P.E., Webb A.C., Rosenwasser L.J., et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA // Proc. Nat. Acad. Sci. U. S. A. 1984. Vol. 81, N 24. P. 7907–7911. DOI: 10.1073/pnas.81.24.7907

54. Terkeltaub R., Sundy J.S., Schumacher H.R., et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study // Ann. Rheum. Dis. 2009. Vol. 68. P. 1613–1617. DOI: 10.1136/ard.2009.108936

55. Lamkanfi M., Kanneganti T.D. Nlrp3: an immune sensor of cellular stress and infection // Int. J. Biochem. Cell. Biol. 2010. Vol. 42, N 6. P. 792–795. DOI: 10.1016/j.biocel.2010.01.008

56. Ковалева Ю.В. Гормоны жировой ткани и их роль в формировании гормонального статуса и патогенезе метаболических нарушений у женщин // Артериальная гипертензия. 2015. Т. 21, № 4. С. 356– 370. DOI: 10.18705/1607-419X-2015-21-4-356-370

57. Tedgui A., Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways // Physiol. Rev. 2006. Vol. 86, N 2. P. 515–581. DOI: 10.1152/physrev.00024.2005

58. Scheller J., Chalaris A., Schmidt-Arras D., RoseJohn S. The proand anti-inflammatory properties of the cytokine interleukin-6 // Biochim. Biophys. Acta. 2011. Vol. 1813, N 5. P. 878–888. DOI: 10.1016/j.bbamcr.2011.01.034

59. Libby P., Rocha V.Z. All roads lead to IL-6: a central hub of cardiometabolic signaling // Int. J. Cardiol. 2018. Vol. 259. P. 213–215. DOI: 10.1016/j.ijcard.2018.02.062

60. Huber S.A., Sakkinen P., Conze D., et al. Interleukin-6 exacerbates early atherosclerosis in mice // Arterioscler. Thromb. Vasc. Biol. 1999. Vol. 19, N 10. P. 2364–2367. DOI: 10.1161/01.atv.19.10.2364

61. Schieffer B., Selle T., Hilfiker A., et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis // Circulation. 2004. Vol. 110. P. 3493–3500. DOI: 10.1161/01.CIR.0000148135.08582.97

62. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, Swerdlow D.I., Holmes M.V., et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis // Lancet. 2012. Vol. 379, N 9822. P. 1214–1224. DOI: 10.1016/S0140-6736(12)60110-X

63. Remick G.D. Interleukin-8 // Crit. Care. Med. 2005. Vol. 33, N 12. P. s646–s647. DOI: 10.1097/01.ccm.0000186783.34908.18

64. Waugh J.J.D., Wilson C. The interleukin-8 pathway in cancer // Clin. Cancer. Res. 2008. Vol. 14, N 21. P. 6735–6741. DOI: 10.1158/1078-0432.CCR-07-4843

65. Gimbrone M.A. Jr., Obin M.S., Brock A.F., et al. Endothelial interleukin-8: a novel inhibitor of leukocyte endothelia linteractions // Science. 1989. Vol. 246, N 4937. P. 1601–1603. DOI: 10.1126/science.2688092

66. DeForge L.E., Preston A.M., Takeuchi E., et al. Regulation of interleukin 8 gene expression by oxidant stress // J. Biol. Chem. 1993. Vol. 268, N 34. P. 25568–25576. PMID: 8244994

67. Inoue T., Komoda H., Nonaka M., et al. Interleukin8as an independent predictor of long-term clinical outcome in patients with coronary artery disease // Int. J. Cardiol. 2008. Vol. 124. P. 319–325. DOI: 10.1016/j.ijcard.2007.02.012

68. Panichi V., Taccola D., Rizza G.M., et al. Interleukin-8 is a powerful prognostic predictor of all-cause and cardio-vascular mortality in dialytic patients // Nephron. Clin. Pract. 2006. Vol. 102, N 2. P. 51–58. DOI: 10.1159/000088923

69. Herder C., Baumert J., Thorand B., et al. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984– 2002 // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26, N 9. P. 2147–2152. DOI: 10.1161/01.ATV.0000235691.84430.86

70. Wu Z.K., Laurikka J., Vikman S., et al. High postoperative interleukin-8 levels related to atrial fibrillation in patients undergoing coronary artery bypass surgery // World J. Surg. 2008. Vol. 32, N 12. P. 2643–2649. DOI: 10.1007/s00268-008-9758-7

71. Nandate K., Vuylsteke A., Crosbie A.E., et al. Cerebrovascular cytokine responses during coronary artery bypass surgery: specific production of interleukin-8 and its attenuation by hypothermic cardiopulmonary bypass // Anesth. Analg. 1999. Vol. 89, N 4. P. 823–828. DOI: 10.1097/00000539-199910000-00003

72. Kim C.S., Park H.S., Kawada T., et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters // Int. J. Obes. (Lond). 2006. Vol. 30, N 9. P. 1347–1355. DOI: 10.1038/sj.ijo.0803259

73. Fiorentino D.F., Bond M.W., Mosmann T. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones // J. Exp. Med. 1989. Vol. 170, N 6. P. 2081–2095. DOI: 10.1084/jem.170.6.2081

74. Mosser D.M., Zhang X. Interleukin-10: new perspectives on an old cytokine // Immunol. Rev. 2008. Vol. 226. P. 205–218. DOI: 10.1111/j.1600-065X.2008.00706.x

75. Sikka G., Miller K.L., Steppan J., et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age // Exp. Gerontol. 2013. Vol. 48, N 2. P. 128–135. DOI: 10.1016/j.exger.2012.11.001

76. Didion S.P., Kinzenbaw D.A., Schrader L.I., et al. Endogenous interleukin-10 inhibits angiotensin ii–induced vascular dysfunction // Hypertension. 2009. Vol. 54. P. 619–624. DOI: 10.1161/HYPERTENSIONAHA.109.137158

77. Malarstig A., Eriksson P., Hamsten A., et al. Raised interleukin-10 is an indicator of poor outcome and enhanced systemic inflammation in patients with acute coronary syndrome // Heart. 2008. Vol. 94. P. 724– 729. DOI: 10.1136/hrt.2007.119271

78. Cavusoglu E., Marmur J.D., Hojjati M.R., et al. Plasma interleukin-10 levels and adverse outcomes in acute coronary syndrome // The Am. J. Med. 2011. Vol. 124, N 8. P. 724–730. DOI: 10.1016/j.amjmed.2011.02.040

79. Izumi T., Nishii M. Diagnostic and prognostic biomarkers in acute myocarditis. Interleukin-10 // Herz. 2012. Vol. 37, N 6. P. 627–631. DOI: 10.1007/s00059012-3661-6

80. Santoro F., Tarantino N., Ferraretti A., et al. Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: increased admission levels may predict adverse events at follow-up // Atherosclerosis. 2016. Vol. 254. P. 28–34. DOI: 10.1016/j.atherosclerosis.2016.09.012

81. Maier W., Altwegg L.A., Corti R., et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid a but decreased C-reactive protein // Circulation. 2005. Vol. 111, N 11. P. 1355–1361. DOI: 10.1161/01.CIR.0000158479.58589.0A

82. Malarstig A., Tenno T., Johnston N., et al. Genetic variations in the tissue factor gene are associated with clinical outcome in acute coronary syndrome and expression levels in human monocytes // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 2667–2672. DOI: 10.1161/01.ATV.0000191637.48129.9b

83. Lee K.W., Blann A.D., Lip G.Y. Plasma markers of endothelial damage/ dysfunction, inflammation and thrombogenesis in relation to TIMI risk stratification in acute coronary syndromes // Thrombosis and Haemostasis. 2005. Vol. 94, N 5. P. 1077–1083. DOI: 10.1160/TH05-03-0179

84. Mead J.R., Irvine S.A., Ramji D.P. Lipoprotein lipase: structure, function, regulation, and role in disease // J. Mol. Med. 2002. Vol. 80, N 12. P. 753–769. DOI: 10.1007/s00109-002-0384-9

85. Khera A.V., Won H., Peloso G.M., et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease // JAMA. 2017. Vol. 317, N 9. P. 937–946. DOI:10.1001/jama.2017.0972

86. Lotta L.A., Stewart I.D., Sharp S.J., et al. Association of genetically enhanced lipoprotein lipase–mediated lipolysis and low-density lipoprotein cholesterol– lowering alleles with risk of coronary disease and type 2 diabetes // JAMA Cardiol. 2018. Vol. 3, N 10. P. 957–966. DOI: 10.1001/jamacardio.2018.2866

87. Saika Y., Sakai N., Takahashi M. Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis // Eur. J. Clin. Invest. 2003. Vol. 33, N 3. P. 216–222. DOI: 10.1046/j.1365-2362.2003. 01129.x

88. Hu Y., Liu W., Huang R. A systematic review and meta-analysis of the relationship between lipoprotein lipase Asn291Ser variant and diseases // J. Lipid. Res. 2006. Vol. 47, N 9. P. 1908–1914. DOI: 10.1194/jlr.M600108-JLR200

89. Sagoo G.S., Tatt I., Salanti G. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: aHuGE association review and metaanalysis // Am. J. Epidemiol. 2008. Vol. 168, N 11. P. 1233–1246. DOI: 10.1093/aje/kwn235.

90. Xie L., Li Y.M. Lipoprotein lipase (LPL) polymorphism and the risk of coronary artery disease: a metaanalysis // Int. J. Environ. Res. Public. Health. 2017. Vol. 14, N 1. P. 84. DOI: 10.3390/ijerph14010084.

91. Jiang L., Zhong J., Dou X., et al. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury // Neuroscience. 2015. Vol. 301. P. 375–383. DOI: 10.1016/j.neuroscience.2015

92. Rasmussen K.L., Tybjaerg-Hansen A., Nordestgaard B.G., et al. Plasma levels of apolipoprotein E and risk of ischemic heart disease in the general population // Atherosclerosis. 2016. Vol. 246. P. 63–70. DOI: 10.1016/j.atherosclerosis.2015.12.038

93. Sofat R., Cooper J.A., Kumari M., et al. Circulating apolipoprotein Econcentration and cardiovascular disease risk: meta-analysis of results from three studies // PLoS Med. 2016. Vol. 13, N 10. P. e1002146. DOI: 10.1371/journal.pmed.1002146

94. Corsetti J.P., Gansevoort R.T., Bakker S.J., et al. Apolipoprotein E predicts incident cardiovascular disease risk in women but not in men with concurrently high levels of high-density lipoprotein cholesterol and C-reactive protein // Metabolism. 2012. Vol. 61, N 7. P. 996–1002. DOI: 10.1016/j.metabol.2011.11.010

95. Mooijaart S.P., Berbee J.F., van Heemst D., et al. ApoE plasma levels and risk of cardiovascular mortality in old age // PLoS Med. 2006. Vol. 3, N 6. P. e176. DOI: 10.1371/journal.pmed.0030176

96. Huber-Lang M., Sarma J.V., Zetoune F.S., et al. Generation of C5a in the absence of C3: a new complement activation pathway // Nat. Med. 2006. Vol. 12, N 6. P. 682–687. DOI: 10.1038/nm1419

97. Barratt-Due A., Pischke S.E., Brekke O.L., et al. Bride and groom in systemic inflammation – the bells ring for complement and Toll in cooperation // Immunobiology. 2012. Vol. 217, N 11. P. 1047– 1056. DOI: 10.1016/j.imbio.2012.07.019

98. Busche M.N., Pavlov V., Takahashi K., et al. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-20binding lectin // Am. J. Physiol. Heart and Circ. Physiol. 2009. Vol. 297, N 5. P. H1853–H1859. DOI: 10.1152/ajpheart.00049.2009

99. Trendelenburg M., Theroux P., Stebbins A., et al. Influence of functional deficiency of complement mannose-binding lectin on outcome of patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention // Eur. Heart J. 2010. Vol. 31, N 10. P. 1181–1187. DOI: 10.1093/eurheartj/ehp597

100. Zhang M., Hou Y.J., Cavusoglu E., et al. MASP-2 activation is involved in ischemia-related necrotic myocardial injury in humans // Int. J. Cardiol. 2013. Vol. 166, N 2. P. 499–504. DOI: 10.1016/j.ijcard.2011.11.032

101. Frauenknecht V., Thiel S., Storm L., et al. Plasma levels of mannan-binding lectin (MBL)-associated serine proteases (MASPs) and MBL-associated protein in cardio-and cerebrovascular diseases // Clin. Experim. Immunol. 2013. Vol. 173, N 1. P. 112– 120. DOI: 10.1111/cei.12093

102. Palikhe A., Sinisalo J., Seppänen M., et al. Serum complement C3/C4 ratio, a novel marker for recurrent cardiovascular events // The Am. J. Cardiol. 2007. Vol. 99, N 7. P. 890–895. DOI: 10.1016/j.amjcard.2006.11.034

103. Engström G., Hedblad B., Janzon L., et al. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study // Eur. J. Cardiovasc. Prev. Rehabil. 2007. Vol. 14, N 3. P. 392–397. DOI: 10.1097/01.hjr.0000244582.30421.b2

104. GombosT., Förhécz Z., Pozsonyi Z., et al. Complement anaphylatoxin C3a as a novel independent prognostic marker in heart failure // Clin. Res. Cardiol: Official Journal of the German Cardiac. Society. 2012. Vol. 101. N 8. P. 607–615. DOI: 10.1007/s00392-012-0432-6

105. Hamsten A., de Faire U., Walldius G., et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction // Lancet. 1987. Vol. 2, N 8549. P. 3–9. DOI: 10.1016/s0140-6736(87)93050-9

106. Yarmolinsky J., Bordin Barbieri N., Weinmann T., et al. Plasminogen activator inhibitor-1 and type 2 diabetes: a systematic review and meta-analysis of observational studies // Sci. Rep. 2016. Vol. 6. P. 17714. DOI: 10.1038/srep17714

107. Smits M.M., Woudstra P., Utzschneider K.M., et al. Adipocytokines as features of the metabolic syndrome determined using confirmatory factor analysis // Ann. Epidemiol. 2013. Vol. 23, N 7. P. 415– 421. DOI: 10.1016/j.annepidem.2013.03.001

108. Tofler G.H., Massaro J., O’Donnell C.J., et al. Plasminogen activator inhibitor and the risk of cardiovascular disease: the Framingham Heart Study // Thromb. Res. 2016. Vol. 140. P. 30–35. DOI: 10.1016/j.thromres.2016.02.002

109. Meltzer M.E., Doggen C.J., de Groot P.G., et al. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men // Blood. 2010. Vol. 116. P. 529–536. DOI: 10.1182/blood-2010-01-263103

110. Thogersen A.M., Nilsson T.K., Weinehall L., et al. Changes in plasma C-reactive protein and hemostatic factors prior to and after a first myocardial infarction with a median follow-up time of 8 years // Blood. Coagul. Fibrinolysis. 2009. Vol. 20, N 5. P. 340–346. DOI: 10.1097/MBC.0b013e32832a5fd1

111. Smith A., Patterson C., Yarnell J., et al. Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke // The Caerphilly Study Circulation. 2005. Vol. 112, N 20. P. 3080–3087. DOI: 10.1161/CIRCULATIONAHA.105.557132

112. Knudsen A., Katzenstein T.L., Benfield T., et al. Plasma plasminogen activator inhibitor-1 predicts myocardial infarction in HIV-1-infected individuals // AIDS. 2014. Vol. 28, N 8. P. 1171–1179. DOI: 10.1097/QAD.0000000000000247

113. Brazionis L., Rowley K., Jenkins A., et al. Plasminogen activator inhibitor-1 activity in type 2 diabetes: a different relationship with coronary heart disease and diabetic retinopathy // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28, N 4. P. 786–791. DOI: 10.1161/ATVBAHA.107.160168

114. Sethi J.K., Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? // Trends Mol. Med. 2005. Vol. 11, N 8. P. 344–347. DOI: 10.1016/j.molmed.2005.06.010

115. Yu F., Li J., Huang Q., et al. Increased peripheral blood visfatin concentrations may be a risk marker of coronary artery disease: a meta-analysis of observational studies // Angiology. 2018. Vol. 69, N 9. P. 825–834. DOI: 10.1177/0003319718771125

116. Auguet T., Aragonиs G., Guiu-Jurado E., et al. Adipo/cytokines in atherosclerotic secretomes: increased visfatin levels in unstable carotid plaque // BMC Cardiovasc. Disord. 2016. Vol. 16, N 1. P. 149. DOI: 10.1186/s12872-016-0320-5

117. Zheng L.Y., Xu X., Wan R.H., et al. Association between serum visfatin levels and atherosclerotic plaque in patients with type 2 diabetes // Diabetol. Metab. Syndr. 2019. Vol. 11. P. 60. DOI: 10.1186/s13098-019-0455-5

118. Goosens G.H., Blaak E.E., van Baak M.A. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesityrelated disorders // Obes. Rev. 2003. Vol. 4, N 1. P. 43–55. DOI: 10.1046/j.1467-789x.2003.00091.x

119. Yvan-Charvet L., Massiera F., Lamande ́ N., et al. Deficiency of angiotensin type 2 receptor rescues obesity but not hypertension induced by overexpression of angiotensinogen in adipose tissue // Endocrinology. 2009. Vol. 150, N 3. P. 1421–1428. DOI: 10.1210/en.2008-1120

120. LeMieuxM. J., Ramalingam L., Mynatt R.L., et al. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity // Obesity (Silver Spring). 2016. Vol. 24, N 2. P. 359–367. DOI: 10.1002/oby.21352

121. Yiannikouris F., Gupte M., Putnam K., Thatcher S., et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice // Hypertension. 2012. Vol. 60, N 6. P. 1524–1530. DOI: 10.1161/hypertensionaha.112.192690

122. Kouyama R., Suganami T., Nishida J., et al. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin ii type 1a receptor // Endocrinology. 2005. Vol. 146, N 8. P. 3481–3489. DOI: 10.1210/en.2005-0003

123. Tatemoto K., Hosoya M., Habata Y., et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor // Biochem. Biophys. Res. Commun. 1998. Vol. 251, N 2. P. 471–476. DOI: 10.1006/bbrc.1998.9489

124. Chandrasekaran B., Dar O., McDonagh T. The role of apelin in cardio-vascular function and heart failure // Eur. J. Heart. Fail. 2008. Vol. 10, N 8. P. 725–732. DOI: 10.1016/j.ejheart.2008.06.002

125. Kidoya H., Ueno M., Yamada Y., et al. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis // EMBO J. 2008. Vol. 27, N 3. P. 522–534. DOI: 10.1038/sj.emboj.7601982

126. Garcia-Diaz D., Campion J., Milagro F.I., et al. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers // Mol. Cell Biochem. 2007. Vol. 305, N 1-2. P. 87–94. DOI: 10.1007/s11010-007-9531-5

127. Falcone C., Buzzi M.P., D’Angelo A., et al. Apelin plasma levels predict arrhythmia recurrence in patients with persistent atrial fibrillation // Int. J. Immunopathol. Pharmacol. 2010. Vol. 23, N 3. P. 917–925. DOI: 10.1177/039463201002300328

128. Tycinska A.M., Sobkowicz B., Mroczko B., et al. The value of apelin-36 and brain natriuretic peptide measurements in patients with first ST-elevation myocardial infarction // Clin. Chim. Acta. 2010. Vol. 411, N 23-24. P. 2014–2018. DOI: 10.1016/j.cca.2010.08.024

129. Kuklinska A.M., Sobkowicz B., Sawicki R., et al. Apelin: a novel marker for the patients with first ST-elevation myocardial infarction // Heart Vessels. 2010. Vol. 25. P. 363–367. DOI: 10.1007/s00380-009-1217-3

130. Kadoglou N.P., Lampropoulos S., Kapelouzou A., et al. Serum levels of apelin and ghrelin in patients with acute coronary syndromes and established coronary artery disease — KOZANI STUDY // Transl. Res. 2010. Vol. 155. P. 238–246. DOI: 10.1016/j.trsl.2010.01.004

131. Kleinz M.J., Baxter G.F. Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase // Regul. Pept. 2008. Vol. 146. N 1-3. P. 271–277. DOI: 10.1016/j.regpep.2007.10.002

132. Földes G., Horkay F., Szokodi I., et al. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure // Am. J. Hypertens. 203. Vol. 16, N 5. A15. DOI: 10.1016/s0895-7061(03)00117-1

133. Chong K.S., Gardner R.S., Morton J.J., et al. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure // Eur. J. Heart Fail. 2006. Vol. 8, N 4. P. 355–360. DOI: 10.1016/j.ejheart.2005.10.007

134. Chen M.M., Ashley E.A., Deng D.X., et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction // Circulation. 2003. Vol. 108, N 12. P. 1432–1439. DOI: 10.1161/01.cir.0000091235.94914.75

135. Yang R.Z., Lee M.J., Hu H., et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action // Am. J. Physiol. Endocrin. Metab. 2006. Vol. 290, N 6. P. E1253–E1261. DOI: 10.1152/ajpendo.00572.2004

136. de Souza Batista C.M., Yang R.Z., Lee M.J., et al. Omentin plasma levels and gene expression are decreased in obesity // Diabetes. 2007. Vol. 56, N 6. P. 1655–1661. DOI: 10.2337/db06-1506

137. Shibata R., Ouchi N., Kikuchi R., et al. Circulating omentin is associated with coronary artery disease in men // Atherosclerosis. 2011. Vol. 219, N 2. P. 811– 814. DOI: 10.1016/j.atherosclerosis.2011.08.017

138. Narumi T., Watanabe T., Kadowaki S., et al. Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure // Cardiovasc. Diabetol. 2014. Vol. 13. P. 84. DOI: 10.1186/1475-2840-13-84

139. Deo R., Khera A., McGuire D.K., et al. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis // J. Am. Coll. Cardiol. 2004. Vol. 44, N 9. P. 1812–1818. DOI: 10.1016/j.jacc.2004.07.047

140. Tang W., Pankow J.S., Carr J.J., et al. Association of sICAM-1 and MCP-1with coronary artery calcification in families enriched for coronary heart disease or hypertension: the NHLBI Family Heart Study // BMC Cardiovasc. Disord. 2007. Vol. 7, N 1. DOI: 10.1186/1471-2261-7-30

141. de Lemos J.A., Morrow D.A., Blazing M.A., et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z trial // J. Am. Coll. Cardiol. 2007. Vol. 50, N 22. P. 2117–2124. DOI: 10.1016/j.jacc.2007.06.057

142. Serrano-Martinez M., Palacios M., Lezaun R. Monocyte chemoattractant protein-1 concentration in coronary sinus blood and severity of coronary disease // Circulation. 2003. Vol. 108, N 10. P. e75. DOI: 10.1161/01.cir.0000089100.20182.b7

143. de Lemos J., Braunwald E. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes // Circulation. 2003. Vol. 107, N 5. P. 690–695. DOI: 10.1161/01.cir.0000049742. 68848.99

144. Lee Y., Lee S., Jung E.S., et al. Visceral adiposity and the severity of coronary artery disease in middleaged subjects with normal waist circumference and its relation with lipocalin-2 and MCP-1 // Atherosclerosis. 2010. Vol. 213, N 2. P. 592–597. DOI: 10.1016/j.atherosclerosis.2010.09.012

145. Park S.E., Lee N.S., Park J.W., et al. Association of urinary RBP4 with insulin // Eur. J. Endocrinol. 2014. Vol. 171, N 4. P. 443–449. DOI: 10.1530/ EJE-14-0247

146. Nikolaos P.E., Kadoglou N.P., Lambadiari V. The relationship of novel adipokines, RBP4 and omentin-1, with carotid atherosclerosis severity and vulnerability // Atherosclerosis. 2014. Vol. 5. P. 606– 612. DOI: 10.1016/j.atherosclerosis.2014.05.957

147. Liu G., Ding M., Chiuve S.E., et al. Plasma levels of fatty acid–binding protein 4, retinol-binding protein 4, high-molecular-weight adiponectin, and cardiovascular mortality among men with type 2 diabetes. A 22-year prospective study // Arterioscler. Thromb. Vascular. Biol. 2016. Vol. 36. P. 2259– 2267. DOI: 10.1161/ATVBAHA.116.308320

148. Ingelsson E., Sundström J., Melhus H., et al. Circulating retinol-binding protein 4, cardiovascular risk factors and prevalent cardiovascular disease in elderly // Atherosclerosis, 2009. Vol. 206, N 1. P. 239–244. DOI: 10.1016/j.atherosclerosis.2009.02.029

149. Alkharfy K.M., Al-Daghri N.M., Vanhoutte P.M., et al. Serum Retinol-Binding Protein 4 as a Marker for Cardiovascular Disease in Women // PLoS One. 2012. Vol. 7, N 10. P. e48612. DOI: 10.1371/journal.pone.0048612

150. Smekal A., Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review // Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2017. Vol. 161, N 1. P. 31–40. DOI: 10.5507/bp.2017.002


Рецензия

Для цитирования:


Облаухова В.И., Рагино Ю.И. Эффекты биомаркеров, секретируемых висцеральными адипоцитами, на сердечно-сосудистую систему. Атеросклероз. 2020;16(1):33-52. https://doi.org/10.15372/ATER20200106

For citation:


Oblaukhova V.I., Ragino Yu.I. Effects of biomarkers secreted by visceral adipocites on the cardiovascular system. Ateroscleroz. 2020;16(1):33-52. (In Russ.) https://doi.org/10.15372/ATER20200106

Просмотров: 345


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)