Effects of biomarkers secreted by visceral adipocites on the cardiovascular system
https://doi.org/10.15372/ATER20200106
Abstract
The literature review highlights the results of recent studies of the world over the invectigations of biochemical factors secreted by visceral adipocytes and affecting the activity of the cardiovascular system. The results of studies of biomolecules such as leptin, adiponectin, resistin, tumor necrosis factor alpha, interleukin 1, interleukin 6, interleukin 8, interleukin 10, tissue factor, lipoprotein lipase, apolipoprotein E, complement factors, plasminogen activator inhibitor type 1, visfatin, proteins of angiotensin system, apelin, omentin, monocyte chemoattractant type 1 protein, retinol-binding protein of type 4 are described.
About the Authors
V. I. OblaukhovaRussian Federation
630089, Novosibirsk, Boris Bogatkov str., 175/1
Yu. I. Ragino
Russian Federation
630089, Novosibirsk, Boris Bogatkov str., 175/1
References
1. Schäffler A., Müller-Ladner U., Schölmerich J., et al. Role of adipose tissue as an inflammatory organ in human diseases // Endocrine Rev. 2006. Vol. 27, N 5. P. 449–467. DOI: 10.1210/er.2005-0022
2. Galic S., Oakhill J.S., Steinberg G.R. Adipose tissue as an endocrine organ // Mol. Cel. Endocrinol. 2010. Vol. 316, N 2. P. 129–139. DOI: 10.1016/j.mce.2009.08.018
3. Hausman G.J., Barb C.R., Lents C.A. Leptin and reproductive function // Biochimie. 2012. Vol. 94, N 10. P. 2075–2081. DOI: 10.1016/j.biochi.2012.02.022
4. Sweeney G. Cardiovascular effects of leptin // Nat. Rev. Cardiol. 2009. Vol. 7, N 1. P. 22–29. DOI:10.1038/nrcardio.2009.224
5. Singh M., Bedi U.S., Singh P.P., et al. Leptin and the clinical cardiovascular risk // Int. J. Cardiol. 2010. Vol. 140, N 3. P. 266–271. DOI: 10.1016/j.ijcard.2009.07.019
6. Sierra-Johnson J., Romero-Corral A., Lopez-Jimenez F., et al. Relation of increased leptin concentrations to history of myocardial infarction and stroke in the united states population // The Am. J. Cardiol. 2007. Vol. 100, N 2. P. 234–239. DOI: 10.1016/j.amjcard.2007.02.088
7. Momin A.U., Melikian N., Shah A.M., et al. Leptin is an endothelial independent vasodilator in humans with coronaryartery disease: evidence for tissue specificity of leptin resistance // Eur. Heart J. 2006. Vol. 27. P. 2294–2299. DOI:10.1093/eurheartj/ehi831.
8. Wolk R., Deb A., Caplice N.M., et al. Leptin receptor and functional effects of leptin in human endothelial progenitor cells // Atherosclerosis. 2005. Vol. 183. P. 131–139. DOI: 10.1016/j.atherosclerosis.2005.03.048
9. Kappelle P.J.W. H., Dullaart R.P.F., van Beek A.P., et al. The plasma leptin/adiponectin ratio predicts first cardiovascular event in men: a prospective nested case–control study // Eur. J. Int. Med. 2012. Vol. 23, N 8. P. 755–759. DOI: 10.1016/j.ejim.2012.06.013
10. Zhu W., Cheng K.K., Vanhoutte P.M., et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention // Clin. Sci. (Lond). 2008. Vol. 114. P. 361–374. DOI: 10.1042/CS20070347
11. Lara-Castro C., Luo N., Wallace P., et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster // Diabetes. 2006. Vol. 55, N 1. P. 249– 259. DOI: 10.2337/diabetes.55.01.06.db05-1105
12. Koenig W., Khuseyinova N., Baumert J., et al. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany // J. Am. Coll. Cardiol. 2006. Vol. 48. P. 1369–1377. DOI: 10.1016/j.jacc.2006.06.053
13. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men // J. Clin. Endocrinol. Metab. 2007. Vol. 92. P. 571–576. DOI: 10.1210/jc.2006-1067
14. Torigoe M., Matsui H., Ogawa Y., et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men // Clin. Endocrinol. (Oxf). 2007. Vol. 67. P. 276–281. DOI:10.1111/j.1365-2265.2007.02876.x
15. Pilz S., Horejsi R., Moller R., et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 4792–4796. DOI:10.1210/jc.2005-0167
16. Lo J., Dolan S.E., Kanter J.R., et al. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women // J. Clin. Endocrinol. Metab. 2006. Vol. 91. P. 1677–1682. DOI: 10.1210/jc.2005-2775
17. Nilsson P.M., Engstrom G., Hedblad B., et al. Plasma adiponectin levels in relation to carotid intima media thickness and markers of insulin resistance // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2758– 2762. DOI: 10.1161/01.ATV.0000249638.01416.4b
18. Norata G.D., Raselli S., Grigore L., et al. Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery // Stroke. 2007. Vol. 38. P. 2844–2846. DOI: 10.1161/STROKEAHA.107.485540
19. Kotani K., Shimohiro H., Sakane N. The relationship between leptin: adiponectin ratio and carotid intimamedia thickness in asymptomatic females // Stroke. 2008. Vol. 39. P. e32–e33. DOI:10.1161/STROKEAHA.107.505669
20. Kotani K., Sakane N., Saiga K., Kurozawa Y. Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness // Diabetologia. 2005. Vol. 48. P. 2684–2686. DOI:10.1007/s00125-005-0015-4
21. Mitsuhashi H., Yatsuya H., Tamakoshi K., et al. Adiponectin level and left ventricular hypertrophy in Japanese men // Hypertension. 2007. Vol. 49. P. 1448–1454. DOI: 10.1161/HYPERTENSIONAHA.106.079509
22. progenitor cells // Atherosclerosis. 2005. Vol. 183. P. 131–139. DOI: 10.1016/j.atherosclerosis.2005.03.048
23. Kappelle P.J.W. H., Dullaart R.P.F., van Beek A.P., et al. The plasma leptin/adiponectin ratio predicts first cardiovascular event in men: a prospective nested case–control study // Eur. J. Int. Med. 2012. Vol. 23, N 8. P. 755–759. DOI: 10.1016/j.ejim.2012.06.013
24. Zhu W., Cheng K.K., Vanhoutte P.M., et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention // Clin. Sci. (Lond). 2008. Vol. 114. P. 361–374. DOI: 10.1042/CS20070347
25. Lara-Castro C., Luo N., Wallace P., et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster // Diabetes. 2006. Vol. 55, N 1. P. 249– 259. DOI: 10.2337/diabetes.55.01.06.db05-1105
26. Koenig W., Khuseyinova N., Baumert J., et al. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany // J. Am. Coll. Cardiol. 2006. Vol. 48. P. 1369–1377. DOI: 10.1016/j.jacc.2006.06.053
27. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men // J. Clin. Endocrinol. Metab. 2007. Vol. 92. P. 571–576. DOI: 10.1210/jc.2006-1067
28. Torigoe M., Matsui H., Ogawa Y., et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men // Clin. Endocrinol. (Oxf). 2007. Vol. 67. P. 276–281. DOI:10.1111/j.1365-2265.2007.02876.x
29. Pilz S., Horejsi R., Moller R., et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 4792–4796. DOI:10.1210/jc.2005-0167
30. Lo J., Dolan S.E., Kanter J.R., et al. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women // J. Clin. Endocrinol. Metab. 2006. Vol. 91. P. 1677–1682. DOI: 10.1210/jc.2005-2775
31. Nilsson P.M., Engstrom G., Hedblad B., et al. Plasma adiponectin levels in relation to carotid intima media thickness and markers of insulin resistance // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2758– 2762. DOI: 10.1161/01.ATV.0000249638.01416.4b
32. Norata G.D., Raselli S., Grigore L., et al. Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery // Stroke. 2007. Vol. 38. P. 2844–2846. DOI: 10.1161/STROKEAHA.107.485540
33. Kotani K., Shimohiro H., Sakane N. The relationship between leptin: adiponectin ratio and carotid intimamedia thickness in asymptomatic females // Stroke. 2008. Vol. 39. P. e32–e33. DOI:10.1161/STROKEAHA.107.505669
34. Kotani K., Sakane N., Saiga K., Kurozawa Y. Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness // Diabetologia. 2005. Vol. 48. P. 2684–2686. DOI:10.1007/s00125-005-0015-4
35. Mitsuhashi H., Yatsuya H., Tamakoshi K., et al. Adiponectin level and left ventricular hypertrophy in Japanese men // Hypertension. 2007. Vol. 49. P. 1448–1454. DOI: 10.1161/HYPERTENSIONAHA.106.079509
36. progenitor cells // Atherosclerosis. 2005. Vol. 183. P. 131–139. DOI: 10.1016/j.atherosclerosis.2005.03.048
37. Kappelle P.J.W. H., Dullaart R.P.F., van Beek A.P., et al. The plasma leptin/adiponectin ratio predicts first cardiovascular event in men: a prospective nested case–control study // Eur. J. Int. Med. 2012. Vol. 23, N 8. P. 755–759. DOI: 10.1016/j.ejim.2012.06.013
38. Zhu W., Cheng K.K., Vanhoutte P.M., et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention // Clin. Sci. (Lond). 2008. Vol. 114. P. 361–374. DOI: 10.1042/CS20070347
39. Lara-Castro C., Luo N., Wallace P., et al. Adiponectin multimeric complexes and the metabolic syndrome trait cluster // Diabetes. 2006. Vol. 55, N 1. P. 249– 259. DOI: 10.2337/diabetes.55.01.06.db05-1105
40. Koenig W., Khuseyinova N., Baumert J., et al. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany // J. Am. Coll. Cardiol. 2006. Vol. 48. P. 1369–1377. DOI: 10.1016/j.jacc.2006.06.053
41. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men // J. Clin. Endocrinol. Metab. 2007. Vol. 92. P. 571–576. DOI: 10.1210/jc.2006-1067
42. Torigoe M., Matsui H., Ogawa Y., et al. Impact of the high-molecular-weight form of adiponectin on endothelial function in healthy young men // Clin. Endocrinol. (Oxf). 2007. Vol. 67. P. 276–281. DOI:10.1111/j.1365-2265.2007.02876.x
43. Pilz S., Horejsi R., Moller R., et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin // J. Clin. Endocrinol. Metab. 2005. Vol. 90. P. 4792–4796. DOI:10.1210/jc.2005-0167
44. Lo J., Dolan S.E., Kanter J.R., et al. Effects of obesity, body composition, and adiponectin on carotid intima-media thickness in healthy women // J. Clin. Endocrinol. Metab. 2006. Vol. 91. P. 1677–1682. DOI: 10.1210/jc.2005-2775
45. Nilsson P.M., Engstrom G., Hedblad B., et al. Plasma adiponectin levels in relation to carotid intima media thickness and markers of insulin resistance // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2758– 2762. DOI: 10.1161/01.ATV.0000249638.01416.4b
46. Norata G.D., Raselli S., Grigore L., et al. Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery // Stroke. 2007. Vol. 38. P. 2844–2846. DOI: 10.1161/STROKEAHA.107.485540
47. Kotani K., Shimohiro H., Sakane N. The relationship between leptin: adiponectin ratio and carotid intimamedia thickness in asymptomatic females // Stroke. 2008. Vol. 39. P. e32–e33. DOI:10.1161/STROKEAHA.107.505669
48. Kotani K., Sakane N., Saiga K., Kurozawa Y. Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness // Diabetologia. 2005. Vol. 48. P. 2684–2686. DOI:10.1007/s00125-005-0015-4
49. Mitsuhashi H., Yatsuya H., Tamakoshi K., et al. Adiponectin level and left ventricular hypertrophy in Japanese men // Hypertension. 2007. Vol. 49. P. 1448–1454. DOI: 10.1161/HYPERTENSIONAHA.106.079509
50. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases // Blood. 2011. Vol. 117. P. 3720–3732. DOI: 10.1182/blood-2010-07-273417
51. Dinarello C.A, Simon A., van der Meer J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases // Nat. Rev. Drug. Discov. 2012. Vol. 11. P. 633–652. DOI:10.1038/nrd3800
52. March C.J., Mosley B., Larsen A., et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs // Nature. 1985. Vol. 315, N 6021. P. 641–647. DOI: 10.1038/315641a0
53. Auron P.E., Webb A.C., Rosenwasser L.J., et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA // Proc. Nat. Acad. Sci. U. S. A. 1984. Vol. 81, N 24. P. 7907–7911. DOI: 10.1073/pnas.81.24.7907
54. Terkeltaub R., Sundy J.S., Schumacher H.R., et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study // Ann. Rheum. Dis. 2009. Vol. 68. P. 1613–1617. DOI: 10.1136/ard.2009.108936
55. Lamkanfi M., Kanneganti T.D. Nlrp3: an immune sensor of cellular stress and infection // Int. J. Biochem. Cell. Biol. 2010. Vol. 42, N 6. P. 792–795. DOI: 10.1016/j.biocel.2010.01.008
56. Ковалева Ю.В. Гормоны жировой ткани и их роль в формировании гормонального статуса и патогенезе метаболических нарушений у женщин // Артериальная гипертензия. 2015. Т. 21, № 4. С. 356– 370. DOI: 10.18705/1607-419X-2015-21-4-356-370
57. Tedgui A., Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways // Physiol. Rev. 2006. Vol. 86, N 2. P. 515–581. DOI: 10.1152/physrev.00024.2005
58. Scheller J., Chalaris A., Schmidt-Arras D., RoseJohn S. The proand anti-inflammatory properties of the cytokine interleukin-6 // Biochim. Biophys. Acta. 2011. Vol. 1813, N 5. P. 878–888. DOI: 10.1016/j.bbamcr.2011.01.034
59. Libby P., Rocha V.Z. All roads lead to IL-6: a central hub of cardiometabolic signaling // Int. J. Cardiol. 2018. Vol. 259. P. 213–215. DOI: 10.1016/j.ijcard.2018.02.062
60. Huber S.A., Sakkinen P., Conze D., et al. Interleukin-6 exacerbates early atherosclerosis in mice // Arterioscler. Thromb. Vasc. Biol. 1999. Vol. 19, N 10. P. 2364–2367. DOI: 10.1161/01.atv.19.10.2364
61. Schieffer B., Selle T., Hilfiker A., et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis // Circulation. 2004. Vol. 110. P. 3493–3500. DOI: 10.1161/01.CIR.0000148135.08582.97
62. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, Swerdlow D.I., Holmes M.V., et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis // Lancet. 2012. Vol. 379, N 9822. P. 1214–1224. DOI: 10.1016/S0140-6736(12)60110-X
63. Remick G.D. Interleukin-8 // Crit. Care. Med. 2005. Vol. 33, N 12. P. s646–s647. DOI: 10.1097/01.ccm.0000186783.34908.18
64. Waugh J.J.D., Wilson C. The interleukin-8 pathway in cancer // Clin. Cancer. Res. 2008. Vol. 14, N 21. P. 6735–6741. DOI: 10.1158/1078-0432.CCR-07-4843
65. Gimbrone M.A. Jr., Obin M.S., Brock A.F., et al. Endothelial interleukin-8: a novel inhibitor of leukocyte endothelia linteractions // Science. 1989. Vol. 246, N 4937. P. 1601–1603. DOI: 10.1126/science.2688092
66. DeForge L.E., Preston A.M., Takeuchi E., et al. Regulation of interleukin 8 gene expression by oxidant stress // J. Biol. Chem. 1993. Vol. 268, N 34. P. 25568–25576. PMID: 8244994
67. Inoue T., Komoda H., Nonaka M., et al. Interleukin8as an independent predictor of long-term clinical outcome in patients with coronary artery disease // Int. J. Cardiol. 2008. Vol. 124. P. 319–325. DOI: 10.1016/j.ijcard.2007.02.012
68. Panichi V., Taccola D., Rizza G.M., et al. Interleukin-8 is a powerful prognostic predictor of all-cause and cardio-vascular mortality in dialytic patients // Nephron. Clin. Pract. 2006. Vol. 102, N 2. P. 51–58. DOI: 10.1159/000088923
69. Herder C., Baumert J., Thorand B., et al. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984– 2002 // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26, N 9. P. 2147–2152. DOI: 10.1161/01.ATV.0000235691.84430.86
70. Wu Z.K., Laurikka J., Vikman S., et al. High postoperative interleukin-8 levels related to atrial fibrillation in patients undergoing coronary artery bypass surgery // World J. Surg. 2008. Vol. 32, N 12. P. 2643–2649. DOI: 10.1007/s00268-008-9758-7
71. Nandate K., Vuylsteke A., Crosbie A.E., et al. Cerebrovascular cytokine responses during coronary artery bypass surgery: specific production of interleukin-8 and its attenuation by hypothermic cardiopulmonary bypass // Anesth. Analg. 1999. Vol. 89, N 4. P. 823–828. DOI: 10.1097/00000539-199910000-00003
72. Kim C.S., Park H.S., Kawada T., et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters // Int. J. Obes. (Lond). 2006. Vol. 30, N 9. P. 1347–1355. DOI: 10.1038/sj.ijo.0803259
73. Fiorentino D.F., Bond M.W., Mosmann T. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones // J. Exp. Med. 1989. Vol. 170, N 6. P. 2081–2095. DOI: 10.1084/jem.170.6.2081
74. Mosser D.M., Zhang X. Interleukin-10: new perspectives on an old cytokine // Immunol. Rev. 2008. Vol. 226. P. 205–218. DOI: 10.1111/j.1600-065X.2008.00706.x
75. Sikka G., Miller K.L., Steppan J., et al. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age // Exp. Gerontol. 2013. Vol. 48, N 2. P. 128–135. DOI: 10.1016/j.exger.2012.11.001
76. Didion S.P., Kinzenbaw D.A., Schrader L.I., et al. Endogenous interleukin-10 inhibits angiotensin ii–induced vascular dysfunction // Hypertension. 2009. Vol. 54. P. 619–624. DOI: 10.1161/HYPERTENSIONAHA.109.137158
77. Malarstig A., Eriksson P., Hamsten A., et al. Raised interleukin-10 is an indicator of poor outcome and enhanced systemic inflammation in patients with acute coronary syndrome // Heart. 2008. Vol. 94. P. 724– 729. DOI: 10.1136/hrt.2007.119271
78. Cavusoglu E., Marmur J.D., Hojjati M.R., et al. Plasma interleukin-10 levels and adverse outcomes in acute coronary syndrome // The Am. J. Med. 2011. Vol. 124, N 8. P. 724–730. DOI: 10.1016/j.amjmed.2011.02.040
79. Izumi T., Nishii M. Diagnostic and prognostic biomarkers in acute myocarditis. Interleukin-10 // Herz. 2012. Vol. 37, N 6. P. 627–631. DOI: 10.1007/s00059012-3661-6
80. Santoro F., Tarantino N., Ferraretti A., et al. Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: increased admission levels may predict adverse events at follow-up // Atherosclerosis. 2016. Vol. 254. P. 28–34. DOI: 10.1016/j.atherosclerosis.2016.09.012
81. Maier W., Altwegg L.A., Corti R., et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid a but decreased C-reactive protein // Circulation. 2005. Vol. 111, N 11. P. 1355–1361. DOI: 10.1161/01.CIR.0000158479.58589.0A
82. Malarstig A., Tenno T., Johnston N., et al. Genetic variations in the tissue factor gene are associated with clinical outcome in acute coronary syndrome and expression levels in human monocytes // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 2667–2672. DOI: 10.1161/01.ATV.0000191637.48129.9b
83. Lee K.W., Blann A.D., Lip G.Y. Plasma markers of endothelial damage/ dysfunction, inflammation and thrombogenesis in relation to TIMI risk stratification in acute coronary syndromes // Thrombosis and Haemostasis. 2005. Vol. 94, N 5. P. 1077–1083. DOI: 10.1160/TH05-03-0179
84. Mead J.R., Irvine S.A., Ramji D.P. Lipoprotein lipase: structure, function, regulation, and role in disease // J. Mol. Med. 2002. Vol. 80, N 12. P. 753–769. DOI: 10.1007/s00109-002-0384-9
85. Khera A.V., Won H., Peloso G.M., et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease // JAMA. 2017. Vol. 317, N 9. P. 937–946. DOI:10.1001/jama.2017.0972
86. Lotta L.A., Stewart I.D., Sharp S.J., et al. Association of genetically enhanced lipoprotein lipase–mediated lipolysis and low-density lipoprotein cholesterol– lowering alleles with risk of coronary disease and type 2 diabetes // JAMA Cardiol. 2018. Vol. 3, N 10. P. 957–966. DOI: 10.1001/jamacardio.2018.2866
87. Saika Y., Sakai N., Takahashi M. Novel LPL mutation (L303F) found in a patient associated with coronary artery disease and severe systemic atherosclerosis // Eur. J. Clin. Invest. 2003. Vol. 33, N 3. P. 216–222. DOI: 10.1046/j.1365-2362.2003. 01129.x
88. Hu Y., Liu W., Huang R. A systematic review and meta-analysis of the relationship between lipoprotein lipase Asn291Ser variant and diseases // J. Lipid. Res. 2006. Vol. 47, N 9. P. 1908–1914. DOI: 10.1194/jlr.M600108-JLR200
89. Sagoo G.S., Tatt I., Salanti G. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: aHuGE association review and metaanalysis // Am. J. Epidemiol. 2008. Vol. 168, N 11. P. 1233–1246. DOI: 10.1093/aje/kwn235.
90. Xie L., Li Y.M. Lipoprotein lipase (LPL) polymorphism and the risk of coronary artery disease: a metaanalysis // Int. J. Environ. Res. Public. Health. 2017. Vol. 14, N 1. P. 84. DOI: 10.3390/ijerph14010084.
91. Jiang L., Zhong J., Dou X., et al. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury // Neuroscience. 2015. Vol. 301. P. 375–383. DOI: 10.1016/j.neuroscience.2015
92. Rasmussen K.L., Tybjaerg-Hansen A., Nordestgaard B.G., et al. Plasma levels of apolipoprotein E and risk of ischemic heart disease in the general population // Atherosclerosis. 2016. Vol. 246. P. 63–70. DOI: 10.1016/j.atherosclerosis.2015.12.038
93. Sofat R., Cooper J.A., Kumari M., et al. Circulating apolipoprotein Econcentration and cardiovascular disease risk: meta-analysis of results from three studies // PLoS Med. 2016. Vol. 13, N 10. P. e1002146. DOI: 10.1371/journal.pmed.1002146
94. Corsetti J.P., Gansevoort R.T., Bakker S.J., et al. Apolipoprotein E predicts incident cardiovascular disease risk in women but not in men with concurrently high levels of high-density lipoprotein cholesterol and C-reactive protein // Metabolism. 2012. Vol. 61, N 7. P. 996–1002. DOI: 10.1016/j.metabol.2011.11.010
95. Mooijaart S.P., Berbee J.F., van Heemst D., et al. ApoE plasma levels and risk of cardiovascular mortality in old age // PLoS Med. 2006. Vol. 3, N 6. P. e176. DOI: 10.1371/journal.pmed.0030176
96. Huber-Lang M., Sarma J.V., Zetoune F.S., et al. Generation of C5a in the absence of C3: a new complement activation pathway // Nat. Med. 2006. Vol. 12, N 6. P. 682–687. DOI: 10.1038/nm1419
97. Barratt-Due A., Pischke S.E., Brekke O.L., et al. Bride and groom in systemic inflammation – the bells ring for complement and Toll in cooperation // Immunobiology. 2012. Vol. 217, N 11. P. 1047– 1056. DOI: 10.1016/j.imbio.2012.07.019
98. Busche M.N., Pavlov V., Takahashi K., et al. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-20binding lectin // Am. J. Physiol. Heart and Circ. Physiol. 2009. Vol. 297, N 5. P. H1853–H1859. DOI: 10.1152/ajpheart.00049.2009
99. Trendelenburg M., Theroux P., Stebbins A., et al. Influence of functional deficiency of complement mannose-binding lectin on outcome of patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention // Eur. Heart J. 2010. Vol. 31, N 10. P. 1181–1187. DOI: 10.1093/eurheartj/ehp597
100. Zhang M., Hou Y.J., Cavusoglu E., et al. MASP-2 activation is involved in ischemia-related necrotic myocardial injury in humans // Int. J. Cardiol. 2013. Vol. 166, N 2. P. 499–504. DOI: 10.1016/j.ijcard.2011.11.032
101. Frauenknecht V., Thiel S., Storm L., et al. Plasma levels of mannan-binding lectin (MBL)-associated serine proteases (MASPs) and MBL-associated protein in cardio-and cerebrovascular diseases // Clin. Experim. Immunol. 2013. Vol. 173, N 1. P. 112– 120. DOI: 10.1111/cei.12093
102. Palikhe A., Sinisalo J., Seppänen M., et al. Serum complement C3/C4 ratio, a novel marker for recurrent cardiovascular events // The Am. J. Cardiol. 2007. Vol. 99, N 7. P. 890–895. DOI: 10.1016/j.amjcard.2006.11.034
103. Engström G., Hedblad B., Janzon L., et al. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study // Eur. J. Cardiovasc. Prev. Rehabil. 2007. Vol. 14, N 3. P. 392–397. DOI: 10.1097/01.hjr.0000244582.30421.b2
104. GombosT., Förhécz Z., Pozsonyi Z., et al. Complement anaphylatoxin C3a as a novel independent prognostic marker in heart failure // Clin. Res. Cardiol: Official Journal of the German Cardiac. Society. 2012. Vol. 101. N 8. P. 607–615. DOI: 10.1007/s00392-012-0432-6
105. Hamsten A., de Faire U., Walldius G., et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction // Lancet. 1987. Vol. 2, N 8549. P. 3–9. DOI: 10.1016/s0140-6736(87)93050-9
106. Yarmolinsky J., Bordin Barbieri N., Weinmann T., et al. Plasminogen activator inhibitor-1 and type 2 diabetes: a systematic review and meta-analysis of observational studies // Sci. Rep. 2016. Vol. 6. P. 17714. DOI: 10.1038/srep17714
107. Smits M.M., Woudstra P., Utzschneider K.M., et al. Adipocytokines as features of the metabolic syndrome determined using confirmatory factor analysis // Ann. Epidemiol. 2013. Vol. 23, N 7. P. 415– 421. DOI: 10.1016/j.annepidem.2013.03.001
108. Tofler G.H., Massaro J., O’Donnell C.J., et al. Plasminogen activator inhibitor and the risk of cardiovascular disease: the Framingham Heart Study // Thromb. Res. 2016. Vol. 140. P. 30–35. DOI: 10.1016/j.thromres.2016.02.002
109. Meltzer M.E., Doggen C.J., de Groot P.G., et al. Plasma levels of fibrinolytic proteins and the risk of myocardial infarction in men // Blood. 2010. Vol. 116. P. 529–536. DOI: 10.1182/blood-2010-01-263103
110. Thogersen A.M., Nilsson T.K., Weinehall L., et al. Changes in plasma C-reactive protein and hemostatic factors prior to and after a first myocardial infarction with a median follow-up time of 8 years // Blood. Coagul. Fibrinolysis. 2009. Vol. 20, N 5. P. 340–346. DOI: 10.1097/MBC.0b013e32832a5fd1
111. Smith A., Patterson C., Yarnell J., et al. Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke // The Caerphilly Study Circulation. 2005. Vol. 112, N 20. P. 3080–3087. DOI: 10.1161/CIRCULATIONAHA.105.557132
112. Knudsen A., Katzenstein T.L., Benfield T., et al. Plasma plasminogen activator inhibitor-1 predicts myocardial infarction in HIV-1-infected individuals // AIDS. 2014. Vol. 28, N 8. P. 1171–1179. DOI: 10.1097/QAD.0000000000000247
113. Brazionis L., Rowley K., Jenkins A., et al. Plasminogen activator inhibitor-1 activity in type 2 diabetes: a different relationship with coronary heart disease and diabetic retinopathy // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28, N 4. P. 786–791. DOI: 10.1161/ATVBAHA.107.160168
114. Sethi J.K., Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? // Trends Mol. Med. 2005. Vol. 11, N 8. P. 344–347. DOI: 10.1016/j.molmed.2005.06.010
115. Yu F., Li J., Huang Q., et al. Increased peripheral blood visfatin concentrations may be a risk marker of coronary artery disease: a meta-analysis of observational studies // Angiology. 2018. Vol. 69, N 9. P. 825–834. DOI: 10.1177/0003319718771125
116. Auguet T., Aragonиs G., Guiu-Jurado E., et al. Adipo/cytokines in atherosclerotic secretomes: increased visfatin levels in unstable carotid plaque // BMC Cardiovasc. Disord. 2016. Vol. 16, N 1. P. 149. DOI: 10.1186/s12872-016-0320-5
117. Zheng L.Y., Xu X., Wan R.H., et al. Association between serum visfatin levels and atherosclerotic plaque in patients with type 2 diabetes // Diabetol. Metab. Syndr. 2019. Vol. 11. P. 60. DOI: 10.1186/s13098-019-0455-5
118. Goosens G.H., Blaak E.E., van Baak M.A. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesityrelated disorders // Obes. Rev. 2003. Vol. 4, N 1. P. 43–55. DOI: 10.1046/j.1467-789x.2003.00091.x
119. Yvan-Charvet L., Massiera F., Lamande ́ N., et al. Deficiency of angiotensin type 2 receptor rescues obesity but not hypertension induced by overexpression of angiotensinogen in adipose tissue // Endocrinology. 2009. Vol. 150, N 3. P. 1421–1428. DOI: 10.1210/en.2008-1120
120. LeMieuxM. J., Ramalingam L., Mynatt R.L., et al. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity // Obesity (Silver Spring). 2016. Vol. 24, N 2. P. 359–367. DOI: 10.1002/oby.21352
121. Yiannikouris F., Gupte M., Putnam K., Thatcher S., et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice // Hypertension. 2012. Vol. 60, N 6. P. 1524–1530. DOI: 10.1161/hypertensionaha.112.192690
122. Kouyama R., Suganami T., Nishida J., et al. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin ii type 1a receptor // Endocrinology. 2005. Vol. 146, N 8. P. 3481–3489. DOI: 10.1210/en.2005-0003
123. Tatemoto K., Hosoya M., Habata Y., et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor // Biochem. Biophys. Res. Commun. 1998. Vol. 251, N 2. P. 471–476. DOI: 10.1006/bbrc.1998.9489
124. Chandrasekaran B., Dar O., McDonagh T. The role of apelin in cardio-vascular function and heart failure // Eur. J. Heart. Fail. 2008. Vol. 10, N 8. P. 725–732. DOI: 10.1016/j.ejheart.2008.06.002
125. Kidoya H., Ueno M., Yamada Y., et al. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis // EMBO J. 2008. Vol. 27, N 3. P. 522–534. DOI: 10.1038/sj.emboj.7601982
126. Garcia-Diaz D., Campion J., Milagro F.I., et al. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers // Mol. Cell Biochem. 2007. Vol. 305, N 1-2. P. 87–94. DOI: 10.1007/s11010-007-9531-5
127. Falcone C., Buzzi M.P., D’Angelo A., et al. Apelin plasma levels predict arrhythmia recurrence in patients with persistent atrial fibrillation // Int. J. Immunopathol. Pharmacol. 2010. Vol. 23, N 3. P. 917–925. DOI: 10.1177/039463201002300328
128. Tycinska A.M., Sobkowicz B., Mroczko B., et al. The value of apelin-36 and brain natriuretic peptide measurements in patients with first ST-elevation myocardial infarction // Clin. Chim. Acta. 2010. Vol. 411, N 23-24. P. 2014–2018. DOI: 10.1016/j.cca.2010.08.024
129. Kuklinska A.M., Sobkowicz B., Sawicki R., et al. Apelin: a novel marker for the patients with first ST-elevation myocardial infarction // Heart Vessels. 2010. Vol. 25. P. 363–367. DOI: 10.1007/s00380-009-1217-3
130. Kadoglou N.P., Lampropoulos S., Kapelouzou A., et al. Serum levels of apelin and ghrelin in patients with acute coronary syndromes and established coronary artery disease — KOZANI STUDY // Transl. Res. 2010. Vol. 155. P. 238–246. DOI: 10.1016/j.trsl.2010.01.004
131. Kleinz M.J., Baxter G.F. Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase // Regul. Pept. 2008. Vol. 146. N 1-3. P. 271–277. DOI: 10.1016/j.regpep.2007.10.002
132. Földes G., Horkay F., Szokodi I., et al. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure // Am. J. Hypertens. 203. Vol. 16, N 5. A15. DOI: 10.1016/s0895-7061(03)00117-1
133. Chong K.S., Gardner R.S., Morton J.J., et al. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure // Eur. J. Heart Fail. 2006. Vol. 8, N 4. P. 355–360. DOI: 10.1016/j.ejheart.2005.10.007
134. Chen M.M., Ashley E.A., Deng D.X., et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction // Circulation. 2003. Vol. 108, N 12. P. 1432–1439. DOI: 10.1161/01.cir.0000091235.94914.75
135. Yang R.Z., Lee M.J., Hu H., et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action // Am. J. Physiol. Endocrin. Metab. 2006. Vol. 290, N 6. P. E1253–E1261. DOI: 10.1152/ajpendo.00572.2004
136. de Souza Batista C.M., Yang R.Z., Lee M.J., et al. Omentin plasma levels and gene expression are decreased in obesity // Diabetes. 2007. Vol. 56, N 6. P. 1655–1661. DOI: 10.2337/db06-1506
137. Shibata R., Ouchi N., Kikuchi R., et al. Circulating omentin is associated with coronary artery disease in men // Atherosclerosis. 2011. Vol. 219, N 2. P. 811– 814. DOI: 10.1016/j.atherosclerosis.2011.08.017
138. Narumi T., Watanabe T., Kadowaki S., et al. Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure // Cardiovasc. Diabetol. 2014. Vol. 13. P. 84. DOI: 10.1186/1475-2840-13-84
139. Deo R., Khera A., McGuire D.K., et al. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis // J. Am. Coll. Cardiol. 2004. Vol. 44, N 9. P. 1812–1818. DOI: 10.1016/j.jacc.2004.07.047
140. Tang W., Pankow J.S., Carr J.J., et al. Association of sICAM-1 and MCP-1with coronary artery calcification in families enriched for coronary heart disease or hypertension: the NHLBI Family Heart Study // BMC Cardiovasc. Disord. 2007. Vol. 7, N 1. DOI: 10.1186/1471-2261-7-30
141. de Lemos J.A., Morrow D.A., Blazing M.A., et al. Serial measurement of monocyte chemoattractant protein-1 after acute coronary syndromes: results from the A to Z trial // J. Am. Coll. Cardiol. 2007. Vol. 50, N 22. P. 2117–2124. DOI: 10.1016/j.jacc.2007.06.057
142. Serrano-Martinez M., Palacios M., Lezaun R. Monocyte chemoattractant protein-1 concentration in coronary sinus blood and severity of coronary disease // Circulation. 2003. Vol. 108, N 10. P. e75. DOI: 10.1161/01.cir.0000089100.20182.b7
143. de Lemos J., Braunwald E. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes // Circulation. 2003. Vol. 107, N 5. P. 690–695. DOI: 10.1161/01.cir.0000049742. 68848.99
144. Lee Y., Lee S., Jung E.S., et al. Visceral adiposity and the severity of coronary artery disease in middleaged subjects with normal waist circumference and its relation with lipocalin-2 and MCP-1 // Atherosclerosis. 2010. Vol. 213, N 2. P. 592–597. DOI: 10.1016/j.atherosclerosis.2010.09.012
145. Park S.E., Lee N.S., Park J.W., et al. Association of urinary RBP4 with insulin // Eur. J. Endocrinol. 2014. Vol. 171, N 4. P. 443–449. DOI: 10.1530/ EJE-14-0247
146. Nikolaos P.E., Kadoglou N.P., Lambadiari V. The relationship of novel adipokines, RBP4 and omentin-1, with carotid atherosclerosis severity and vulnerability // Atherosclerosis. 2014. Vol. 5. P. 606– 612. DOI: 10.1016/j.atherosclerosis.2014.05.957
147. Liu G., Ding M., Chiuve S.E., et al. Plasma levels of fatty acid–binding protein 4, retinol-binding protein 4, high-molecular-weight adiponectin, and cardiovascular mortality among men with type 2 diabetes. A 22-year prospective study // Arterioscler. Thromb. Vascular. Biol. 2016. Vol. 36. P. 2259– 2267. DOI: 10.1161/ATVBAHA.116.308320
148. Ingelsson E., Sundström J., Melhus H., et al. Circulating retinol-binding protein 4, cardiovascular risk factors and prevalent cardiovascular disease in elderly // Atherosclerosis, 2009. Vol. 206, N 1. P. 239–244. DOI: 10.1016/j.atherosclerosis.2009.02.029
149. Alkharfy K.M., Al-Daghri N.M., Vanhoutte P.M., et al. Serum Retinol-Binding Protein 4 as a Marker for Cardiovascular Disease in Women // PLoS One. 2012. Vol. 7, N 10. P. e48612. DOI: 10.1371/journal.pone.0048612
150. Smekal A., Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review // Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2017. Vol. 161, N 1. P. 31–40. DOI: 10.5507/bp.2017.002
Review
For citations:
Oblaukhova V.I., Ragino Yu.I. Effects of biomarkers secreted by visceral adipocites on the cardiovascular system. Ateroscleroz. 2020;16(1):33-52. (In Russ.) https://doi.org/10.15372/ATER20200106