PILOT STUDY OF THE ASSOCIATION OF TRPA1 AND TRPV1 GENE POLYMORPHISMS WITH MYOCARDIAL INFARCTION
https://doi.org/10.15372/ATER20190304
Abstract
The aim of the study was to investigate the association of SNPs in the TRPA1 (rs13268757) and TRPV1 (rs222747) genes with myocardial infarction.
Material and methods. Myocardial infarction (MI) (200 individuals) and control (420 individuals) groups were formed as a part of international HAPIEE project. Genotyping the groups for the studied rs13268757 and rs222747 polymorphisms was performed by a real-time PCR on a StepOnePlus device (Applied Biosystems, USA) using TaqMan probes (Applied Biosystems, USA) according to a standard protocol. Intergroup comparison of the allele/genotype frequencies for each of the studied polymorphisms was calculated using Fisher's exact test and the SPSS 11.0 program. The correspondence of genotype frequencies to Hardy-Weinberg equilibrium was tested using the χ2 method. The relative risk of MI for a particular allele or genotype was calculated as an odds ratio (OR) using Fisher’s exact two-sided test and Pearson chi-square test. Differences were considered statistically significant with a significance level p <0.05.
Results. The frequency of the homozygous AA genotype for the TRPA1 gene rs13268757 polymorphism differed significantly in patients with MI as compared with the control, AA vs GG + AG OR = 2.621 (95 % CI 1.112–6.175; p = 0.034). No statistically significant results were shown for the TRPV1 rs222747.
Conclusion. The association of the TRPV1 gene rs222747 and TRPA1 gene rs13268757 polymorphisms with MI was for the first time checked in Russia. The association with MI was shown for the TRPA1 gene rs13268757 polymorphism.
About the Authors
P. S. OrlovRussian Federation
V. N. Maksimov
Russian Federation
S. V. Mikhaylova
Russian Federation
D. E. Ivanoshchuk
Russian Federation
S. K. Malyutina
Russian Federation
M. I. Voevoda
Russian Federation
References
1. Go A.S., Mozaffarian D., Roger V.l., Benjamin E.J., Berry J.D., Blaha M.J., Dai S., Ford E.S., Fox C.S., Franco S., Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Huffman M.D., Judd S.E., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Mackey R.H., Magid D.J., Marcus G.M., Marelli A., Matchar D.B., McGuire D.K., Mohler E.R. 3rd, Moy C.S., Mussolino M.E., Neumar R.W., Nichol G., Pandey D.K., Paynter N.P., Reeves M.J., Sorlie P.D., Stein J., Towfighi A., Turan T.N., Virani S.S., Wong N.D., Woo D., Turner M.B. Heart disease and stroke statistics–2014 update: a report from the American Heart Association // Circulation. 2014. Vol. 129, N 3. P. e28–e292. doi: 10.1161/01.cir.0000441139.02102.80.
2. Girelli D., Martinelli N., Peyvandi F., Olivieri O. Genetic architecture of coronary artery disease in the genome-wide era: implications for the emerging «golden dozen» loci // Semin. Thromb. Hemost. 2009. Vol. 35, N 7. P. 671–682. doi: 10.1055/s-0029-1242721.
3. Earley S., Brayden J.E. Transient receptor potential channels in the vasculature // Physiol. Rev. 2015. Vol. 95, N 2. P. 645–690. doi: 10.1152/physrev.00026.2014.
4. Vriens J., Nilius B., Voets T. Peripheral thermosensation in mammals // Nat. Rev. Neurosci. 2014. Vol. 15, N 9. P. 573–589. doi:10.1038/nrn3784. PMID 25053448.
5. Conklin D.J., Guo Y., Nystoriak M.A., Jagatheesan G., Obal D., Kilfoil P.J., Hoetker J.D., Guo L., Bolli R., Bhatnagar A. TRPA1 channel contributes to myocardial ischemia-reperfusion injury // Am. J. Physiol. Heart Circ. Physiol. 2019. Vol. 316, N 4. P. H889–H899. doi: 10.1152/ajpheart.00106.2018.
6. Lupiński S.Ł., Schlicker E., Pędzińska-Betiuk A., Malinowska B. Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptormediated Bezold-Jarisch reflex in rats // Pharmacol. Rep. 2011. Vol. 63, N 6. P. 1450–1459.
7. Fischer M.J., Balasuriya D., Jeggle P., Goetze T.A., McNaughton P.A., Reeh P.W., Edwardson J.M. Direct evidence for functional TRPV1/TRPA1 heteromers // Pflügers Arch. 2014. Vol. 466, N 12. P. 2229–2241.
8. Yanaga A., Goto H., Nakagawa T., Hikiami H., Shibahara N., Shimada Y. Cinnamaldehyde Induces Endothelium-Dependent and -Independent Vasorelaxant Action on Isolated Rat Aorta // Biol. Pharm. Bull. 2006. Vol. 29, N 12. P. 2415–2418.
9. Cavanaugh D.J., Chesler A.T., Jackson A.C., Sigal Y.M., Yamanaka H., Grant R., O'Donnell D., Nicoll R.A., Shah N.M., Julius D., Basbaum A.I. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells // J. Neurosci. 2011. Vol. 31, N 13. P. 5067–5077.
10. Bodkin J.V., Thakore P., Aubdool A.A., Liang L., Fernandes E.S., Nandi M., Spina D., Clark J.E., Aaronson P.I., Shattock M.J., Brain S.D. Investigating the potential role of TRPA1 in locomotion and cardiovascular control during hypertension // Pharmacol. Res. Perspect. 2014. Vol. 2, N 4. ID e00052. doi: 10.1002/prp2.52.
11. Qian X., Francis M., Solodushko V., Earley S., Taylor M.S. Recruitment of dynamic endothelial Ca2+ signals by the TRPA1 channel activator AITC in rat cerebral arteries // Microcirculation. 2013. Vol. 20, N 2. P. 138–148.
12. Sadeh M., Glazer B., Landau Z., Wainstein J., Bezaleli T., Dabby R., Hanukoglu A., Boaz M., Leshinsky- Silver E. Association of the M3151 variant in the transient receptor potential vanilloid receptor-1 (TRPV1) gene with type 1 diabetes in an Ashkenazi Jewish population // Isr. Med. Assoc. J. 2013. Vol. 15, N 9. P. 477–480.
13. Xue Q., Yu Y., Trilk S.L., Jong B.E., Schumacher M.A. The genomic organization of the gene encoding the vanilloid receptor: Evidence for multiple splice variants // Genomics. 2001. Vol. 76, N 1-3. P. 14–20. doi:10.1006/geno.2001.6582.
14. Derbenev A.V., Zsombok A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity // Semin. Immunopathol. 2015. Vol. 38, N 3. P. 397–406.
15. Binder A., May D., Baron R., Maier C., Tölle T.R., Treede R.D., Berthele A., Faltraco F., Flor H., Gierthmühlen J., Haenisch S., Huge V., Magerl W., Maihöfner C., Richter H., Rolke R., Scherens A., Uçeyler N., Ufer M., Wasner G., Zhu J., Cascorbi I. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients // PLoS One. 2011. Vol. 6, N 3. ID e17387. doi: 10.1371/journal.pone.0017387.
16. MONICA Monograph and Multimedia Sourcebook. The World's largest study of heart disease, stroke, risk factors, and population trends (1979-2002) / Ed. H. Tunstall-Pedoe. Geneva, 2003. 237 р.
17. North K.C., Chang J., Bukiya A.N., Dopico A.M. Extra-endothelial TRPV1 channels participate in alcohol and caffeine actions on cerebral artery diameter // Alcohol. 2018. Vol. 73. P. 45–55. doi: 10.1016/j.alcohol.2018.04.002.
18. Okamoto N., Okumura M., Tadokoro O., Sogawa N., Tomida M., Kondo E. Effect of single-nucleotide polymorphisms in TRPV1 on burning pain and capsaicin sensitivity in Japanese adults // Molecular Pain. 2018. Vol. 14. ID 174480691880443. doi: 10.1177/1744806918804439.
19. Uhl G.R., Walther D., Behm F.M., Rose J.E. Menthol preference among smokers: association with TRPA1 variants // Nicotine Tob. Res. 2011. Vol. 13, N 12. P. 1311–1315. doi: 10.1093/ntr/ntr119.
Review
For citations:
Orlov P.S., Maksimov V.N., Mikhaylova S.V., Ivanoshchuk D.E., Malyutina S.K., Voevoda M.I. PILOT STUDY OF THE ASSOCIATION OF TRPA1 AND TRPV1 GENE POLYMORPHISMS WITH MYOCARDIAL INFARCTION. Ateroscleroz. 2019;15(3):50-55. (In Russ.) https://doi.org/10.15372/ATER20190304