Микросомальный белок-переносчик триглицеридов: молекулярная генетика, функциональные механизмы и клиническое значение
https://doi.org/10.52727/2078-256X-2025-21-4-453-464
Аннотация
Цель настоящей работы – провести комплексный обзор структурно-функциональной организации гена MTTP и кодируемого им микросомального белка‑переносчика триглицеридов (МБПТ), охарактеризовать его патогенные варианты и описать молекулярные механизмы их действия. МБПТ является ключевым регулятором липидного обмена, необходимым для сборки и секреции apoB‑содержащих липопротеинов в гепатоцитах и энтероцитах. Биаллельные патогенные варианты гена MTTP вызывают абеталипопротеинемию – редкое жизнеугрожающее заболевание с прогрессирующими неврологическими и офтальмологическими осложнениями. Распространенные варианты гена ассоциированы с различными метаболическими нарушениями. Проведен обзор литературы с анализом структуры и механизмов альтернативного сплайсинга гена MTTP, доменной организации белка МБПТ, его взаимодействия с протеин‑дисульфид‑изомеразой, и некоторых патогенных вариантов этого гена на основе опубликованных функциональных исследований и клинических данных. Углубленное понимание молекулярных механизмов дисфункции МБПТ необходимо для корректной интерпретации результатов генетического тестирования, прогнозирования клинического фенотипа, проведения дифференциальной диагностики и разработки персонализированных терапевтических стратегий при абеталипопротеинемии и ассоциированных с ней нарушениях.
Ключевые слова
Об авторах
А. С. АсекритоваРоссия
Александра Степановна Асекритова, зав. Центром предиктивной медицины и биоинформатики
677027, Республика Саха (Якутия), г. Якутск, ул. Горького, 94;
доцент кафедры «Внутренние болезни и общей врачебной подготовки (семейная медицина)», Медицинского института
677000, Республика Саха (Якутия), г. Якутск, ул. Белинского, 58
А. В. Павлова
Россия
Анна Владимировна Павлова, кардиолог Центра предиктивной медицины и биоинформатики
677027, Республика Саха (Якутия), г. Якутск, ул. Горького, 94
С. В. Михайлова
Россия
Светлана Владимировна Михайлова, научный сотрудник лаборатории молекулярной генетики человека
630090, г. Новосибирск, пр. Академика Лаврентьева, 10
Д. Е. Иванощук
Россия
Иванощук Динара Евгеньевна, младший научный сотрудник лаборатории молекулярной генетики человека
630090, г. Новосибирск, пр. Академика Лаврентьева, 10
Список литературы
1. Hussain M.M., Shi J., Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Research, 2003; 44 (1): 22–32. doi: 10.1194/jlr.R200014-JLR200
2. Rustaeus S., Stillemark P., Lindberg K., Gordon D., Olofsson S.O. The microsomal triglyceride transfer protein catalyzes the post-translational assembly of apolipoprotein B-100 very low density lipoprotein in McA-RH7777 cells. J. Biol. Chem., 1998; 273 (9): 5196–5203. doi: 10.1074/jbc.273.9.5196
3. Hussain M.M. A proposed model for the assembly of chylomicrons. Atherosclerosis, 2000; 148 (1): 1–15. doi: 10.1016/s0021-9150(99)00397-4
4. Raabe M., Veniant M.M., Sullivan M.A., Zlot C.H., Björkegren J., Nielsen L.B., Wong J.S., Hamilton R.L., Young S.G. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J. Clin. Investigat., 1999; 103 (9): 1287–1298. doi: 10.1172/JCI6576
5. Jamil H., Dickson J.K., Jr., Chu C.H., Lago M.W., Rinehart J.K., Biller S.A., Gregg R.E., Wetterau J.R. Microsomal triglyceride transfer protein. Specificity of lipid binding and transport. J. Biol. Chem., 1995; 270 (12): 6549–6554. doi: 10.1074/jbc.270.12.6549
6. Bassen F.A., Kornzweig A.L. Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood., 1950; 5 (4): 381–387. doi: 10.1182/blood.V5.4.381.381
7. Burnett J.R., Bell D.A., Hooper A.J., Hegele R.A. Clinical utility gene card for: Abetalipoproteinaemia – Update 2014. Eur. J. Hum. Genet., 2015; 23 (6): 890. doi: 10.1038/ejhg.2014.224
8. Hentati F., El-Euch G., Bouhlal Y., Amouri R. Ataxia with vitamin E deficiency and abetalipoproteinemia. Handb. Clin. Neurol., 2012; 103: 295–305. doi: 10.1016/B978-0-444-51892-7.00018-8
9. Lee J., Hegele R.A. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J. Inherit. Metab. Dis., 2014; 37 (3): 333–339. doi: 10.1007/s10545-013-9665-4
10. Takahashi M., Okazaki H., Ohashi K., Ogura M., Ishibashi S., Okazaki S., Hirayama S., Hori M., Matsuki K., Yokoyama S., Harada-Shiba M. Current Diagnosis and Management of Abetalipoproteinemia. J. Atheroscler. Thromb., 2021; 28 (10): 1009–1019. doi: 10.5551/jat.RV17056
11. Rodríguez Gutiérrez P.G., González García J.R., Castillo de León Y.A., Zárate Guerrero J.R., Magaña Torres M.T. A novel p.Gly417Valfs*12 mutation in the MTTP gene causing abetalipoproteinemia: Presentation of the first patient in Mexico and analysis of the previously reported cases. J. Clin. Lab. Anal., 2021; 35 (3): e23672. doi: 10.1002/jcla.23672
12. Sharp D., Ricci B., Kienzle B., Lin M.C., Wetterau J.R. Human microsomal triglyceride transfer protein large subunit gene structure. Biochemistry, 1994; 33(31): 9057–9061. doi: 10.1021/bi00197a005
13. Suzuki T., Swift L.L. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues. Sci. Rep., 2016; 6: 27308. doi: 10.1038/srep27308
14. Biterova E.I., Isupov M.N., Keegan R.M., Lebedev A.A., Sohail A.A., Liaqat I., Alanen H.I., Ruddock L.W. The crystal structure of human microsomal triglyceride transfer protein. Proc. Natl. Acad. Sci. USA., 2019; 116 (35): 17251–17260. doi: 10.1073/pnas.1903029116
15. Rehberg E.F., Samson-Bouma M.E., Kienzle B., Blinderman L., Jamil H., Wetterau J.R., Aggerbeck L.P., Gordon D.A. A novel abetalipoproteinemia genotype. Identification of a missense mutation in the 97-kDa subunit of the microsomal triglyceride transfer protein that prevents complex formation with protein disulfide isomerase. J. Biol. Chem., 1996; 271 (47): 29945–29952. doi: 10.1074/jbc.271.47.29945
16. Hussain M.M., Rava P., Walsh M., Rana M., Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. (Lond.), 2012; 9: 14. doi: 10.1186/1743-7075-9-14
17. Wetterau J.R., Combs K.A., Spinner S.N., Joiner B.J. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J. Biol. Chem., 1990; 265,(17): 9800–9807
18. Klappa P., Ruddock L.W., Darby N.J., Freedman R.B. The b’ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J., 1998; 17 (4): 927–935. doi: 10.1093/emboj/17.4.927
19. Ellgaard L., Ruddock L.W. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep., 2005; 6 (1): 28–32. doi: 10.1038/sj.embor.7400311
20. Chen F., Yang A., Lu Y., Zhang Y., Zhang J., Bu J., Guo R., Han Y., Wu D., Wu Y. Differential transport pathways of saturated and unsaturated fatty acid esters in male mouse hepatocytes. Nat. Commun., 2025; 16 (1): 1344. doi: 10.1038/s41467-025-56620-4
21. Munro S., Pelham H.R. A C-terminal signal prevents secretion of luminal ER proteins. Cell, 1987; 48 (5): 899–907. doi: 10.1016/0092-8674(87)90086-9
22. Mann C.J., Anderson T.A., Read J., Chester S.A., Harrison G.B., Köchl S., Ritchie P.J., Bradbury P., Hussain F.S., Amey J., Vanloo B., Rosseneu M., Infante R., Hancock J.M., Levitt D.G., Banaszak L.J., Scott J., Shoulders C.C. The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J. Mol. Biol., 1999; 285 (1): 391–408. doi: 10.1006/jmbi.1998.2298
23. Bradbury P., Mann C.J., Köchl S., Anderson T.A., Chester S.A., Hancock J.M., Ritchie P.J., Amey J., Harrison G.B., Levitt D.G., Banaszak L.J., Scott J., Shoulders C.C. A common binding site on the microsomal triglyceride transfer protein for apolipoprotein B and protein disulfide isomerase. J. Biol. Chem., 1999; 274 (5): 3159–3164. doi: 10.1074/jbc.274.5.3159
24. Rustaeus S., Stillemark P., Lindberg K., Gordon D., Olofsson S.O. The microsomal triglyceride transfer protein catalyzes the post-translational assembly of apolipoprotein B-100 very low density lipoprotein in McA-RH7777 cells. J. Biol. Chem., 1998; 273 (9): 5196–5203. doi: 10.1074/jbc.273.9.5196
25. Sirwi A., Hussain M.M. Lipid transfer proteins in the assembly of apoB-containing lipoproteins. J. Lipid. Res., 2018; 59 (7): 1094–1102. doi: 10.1194/jlr.R083451
26. Thierer J.H., Foresti O., Yadav P.K., Wilson M.H., Moll T.O.C., Shen M.C., Busch-Nentwich E.M., Morash M., Mohlke K.L., Rawls J.F., Malhotra V., Hussain M.M., Farber S.A. Pla2g12b drives expansion of triglyceride-rich lipoproteins. Nat. Commun., 2024; 15 (1): 2095. doi: 10.1038/s41467-024-46102-4
27. Fisher E., Lake E., McLeod R.S. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J. Biomed. Res., 2014; 28 (3): 178–193. doi: 10.7555/JBR.28.20140019
28. Iqbal J., Walsh M.T., Hammad S.M., Cuchel M., Tarugi P., Hegele R.A., Davidson N.O., Rader D.J., Klein R.L., Hussain M.M. Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide. J. Biol. Chem., 2015; 290 (43): 25863–25875. doi: 10.1074/jbc.M115.659110
29. Rader D.J., Brewer H.B., Jr. Abetalipoproteinemia. New insights into lipoprotein assembly and vitamin E metabolism from a rare genetic disease. JAMA, 1993; 270 (7): 865–869. doi: 10.1001/jama.270.7.865
30. Valmiki S., Bredefeld C., Hussain M.M. A novel mutation, Ile344Asn, in microsomal triglyceride transfer protein abolishes binding to protein disulfide isomerase. J. Lipid. Res., 2025; 66 (1): 100725. doi: 10.1016/j.jlr.2024.100725
31. Benayoun L., Granot E., Rizel L., Allon-Shalev S., Behar D.M., Ben-Yosef T. Abetalipoproteinemia in Israel: evidence for a founder mutation in the Ashkenazi Jewish population and a contiguous gene deletion in an Arab patient. Mol. Genet. Metab., 2007; 90 (4): 453–457. doi: 10.1016/j.ymgme.2006.12.010
32. Ricci B., Sharp D., O’Rourke E., Kienzle B., Blinderman L., Gordon D., Smith-Monroy C., Robinson G., Gregg R.E., Rader D.J., Wetterau J.R. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide-isomerase and causes abetalipoproteinemia. J. Biol. Chem., 1995; 270 (24): 14281–14285. doi: 10.1074/jbc.270.24.14281
33. Walsh M.T., Iqbal J., Josekutty J., Soh J., Di Leo E., Özaydin E., Gündüz M., Tarugi P., Hussain M.M. Novel Abetalipoproteinemia Missense Mutation Highlights the Importance of the N-Terminal β-Barrel in Microsomal Triglyceride Transfer Protein Function. Circ. Cardiovasc. Genet., 2015; 8 (5): 677–687. doi: 10.1161/CIRCGENETICS.115.001106
34. Khatun I., Walsh M.T., Hussain M.M. Loss of both phospholipid and triglyceride transfer activities of microsomal triglyceride transfer protein in abetalipoproteinemia. J. Lipid. Res., 2013; 54 (6): 1541–1549. doi: 10.1194/jlr.M031658
35. Miller S.A., Burnett J.R., Leonis M.A., McKnight C.J., van Bockxmeer F.M., Hooper A.J. Novel missense MTTP gene mutations causing abetalipoproteinemia. Biochim. Biophys. Acta., 2014; 1842 (10): 1548–1554. doi: 10.1016/j.bbalip.2014.08.001
36. Di Filippo M., Varret M., Boehm V., Rabès J.P., Ferkdadji L., Abramowitz L., Dumont S., Lenaerts C., Boileau C., Joly F., Schmitz J., Samson-Bouma M.E., Bonnefont-Rousselot D. Postprandial lipid absorption in seven heterozygous carriers of deleterious variants of MTTP in two abetalipoproteinemic families. J. Clin. Lipidol., 2019; 13 (1): 201–212. doi: 10.1016/j.jacl.2018.10.003
37. Paquette M., Dufour R., Hegele R.A., Baass A. A tale of 2 cousins: An atypical and a typical case of abetalipoproteinemia. J. Clin. Lipidol., 2016; 10 (4): 1030–1034. doi: 10.1016/j.jacl.2016.01.003
38. Di Filippo M., Créhalet H., Samson-Bouma M.E., Bonnet V., Aggerbeck L.P., Rabès J.P., Gottrand F., Luc G., Bozon D., Sassolas A. Molecular and functional analysis of two new MTTP gene mutations in an atypical case of abetalipoproteinemia. J. Lipid. Res., 2012; 53 (3): 548–555. doi: 10.1194/jlr.M020024
39. Wang J., Hegele R.A. Microsomal triglyceride transfer protein (MTP) gene mutations in Canadian subjects with abetalipoproteinemia. Hum. Mutat., 2000; 15 (3): 294–295. doi: 10.1002/(SICI)1098-1004(200003)15:3<294::AID-HUMU14>3.0.CO;2-E
40. Ohashi K., Ishibashi S., Osuga J., Tozawa R., Harada K., Yahagi N., Shionoiri F., Iizuka Y., Tamura Y., Nagai R., Illingworth D.R., Gotoda T., Yamada N. Novel mutations in the microsomal triglyceride transfer protein gene causing abetalipoproteinemia. J. Lipid. Res., 2000; 41 (8): 1199–1204
41. Gurram S., Holla V.V., Sriram N., Phulpagar P., Jha S., Sharma P., Mallithavana S., Kamble N., Netravathi M., Yadav R., Muthusamy B., Pal P.K. A Rare Case of Ophthalmoplegia with Ataxia in Genetically Proven Abetalipoproteinemia. Mov. Disord. Clin. Pract., 2022; 10 (3): 514–517. doi: 10.1002/mdc3.13626
42. Grove J.I., Lo P.C.K., Shrine N., Barwell J., Wain L.V., Tobin M.D., Salter A.M., Borkar A.N., Cuevas-Ocaña S., Bennett N., John C., Ntalla I., Jones G.E., Neal C.P., Thomas M.G., Kuht H., Gupta P., Vemala V.M., Grant A., Adewoye A.B., Shenoy K.T., Balakumaran L.K., Hollox E.J., Hannan N.R.F., Aithal G.P. Identification and characterisation of a rare MTTP variant underlying hereditary non-alcoholic fatty liver disease. JHEP Rep., 2023; 5 (8): 100764. doi: 10.1016/j.jhepr.2023.100764
43. Sasaki K., Tada H., Komatsu T., Terada H., Endo Y., Ikewaki K., Uehara Y. A New Case of Abetalipoproteinemia Caused by Novel Compound Heterozygote Mutations in the MTTP Gene without Fat or Vitamin Malabsorption. J. Atheroscler. Thromb., 2024; 31 (11): 1634–1640. doi: 10.5551/jat.64730
44. Gouda W., Ashour E., Shaker Y., Ezzat W. MTP genetic variants associated with non-alcoholic fatty liver in metabolic syndrome patients. Genes Dis., 2017; 4 (4): 222–228. doi: 10.1016/j.gendis.2017.09.002
45. Peng X.E., Wu Y.L., Lu Q.Q., Hu Z.J., Lin X. MTTP polymorphisms and susceptibility to non-alcoholic fatty liver disease in a Han Chinese population. Liver Int., 2014; 34 (1): 118–128. doi: 10.1111/liv.12220
46. Ledmyr H., McMahon A.D., Ehrenborg E., Nielsen L.B., Neville M., Lithell H., MacFarlane P.W., Packard C.J., Karpe F.; WOSCOPS executive. The microsomal triglyceride transfer protein gene-493T variant lowers cholesterol but increases the risk of coronary heart disease. Circulation. 2004; 109 (19): 2279–2284. doi: 10.1161/01.CIR.0000130070.96758.7b
47. di Giuseppe R., Pechlivanis S., Fisher E., Arregui M., Weikert B., Knüppel S., Buijsse B., Fritsche A., Willich S.N., Joost H.G., Boeing H., Moebus S., Weikert C. Microsomal triglyceride transfer protein -164 T > C gene polymorphism and risk of cardiovascular disease: results from the EPIC-Potsdam case-cohort study. BMC Med. Genet., 2013; 14: 19. doi: 10.1186/1471-2350-14-19
48. Rubin D., Helwig U., Pfeuffer M., Schreiber S., Boeing H., Fisher E., Pfeiffer A., Freitag-Wolf S., Foelsch U.R., Doering F., Schrezenmeir J. A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J. Hum. Genet., 2006; 51 (6): 567–574. doi: 10.1007/s10038-006-0400-y
49. Wang X., Cao Y., Guo J., Li D., Zhang H., Song Q., Lu J. Association between MTTP genotype (-493G/T) polymorphism and hepatic steatosis in hepatitis C: a systematic review and meta-analysis. Lipids Health Dis., 2023; 22 (1): 154. doi: 10.1186/s12944-023-01916-x
Рецензия
Для цитирования:
Асекритова А.С., Павлова А.В., Михайлова С.В., Иванощук Д.Е. Микросомальный белок-переносчик триглицеридов: молекулярная генетика, функциональные механизмы и клиническое значение. Атеросклероз. 2025;21(4):453-464. https://doi.org/10.52727/2078-256X-2025-21-4-453-464
For citation:
Asekritova A.S., Pavlova A.V., Mikhailova S.V., Ivanoshchuk D.E. Microsomal triglyceride transfer protein: molecular genetics, functional mechanisms, and clinical significance. Ateroscleroz. 2025;21(4):453-464. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-4-453-464
JATS XML






















