Preview

Ateroscleroz

Advanced search

Dyslipidemia: current approaches to pharmacological and non-pharmacological management

https://doi.org/10.52727/2078-256X-2025-21-4-440-452

Abstract

Relevance. The problem of dyslipidemia remains one of the most important in many countries, including the Russian Federation. The proportion of patients with familial hypercholesterolemia who have reached the target LDL level does not exceed 2 %; the target levels of lipid profile indicators in primary and secondary prevention of cardiovascular diseases are achieved in only 26 % of cases, which is associated with the prescription of incorrect statin doses; the absence of combination therapy with ezetimibe; extremely rare prescription of PCSK9 inhibitors and/or bempedoic acid due to lack of proper experience with their use and the novelty of these drugs; and insufficient awareness among doctors and patients about the need to achieve the target LDL level [1]. A systematic search of publications was conducted in the PubMed, Scopus, Web of Science, and eLibrary databases for the period 2018–2025. The following keywords were used: low-density lipoproteins, bempedoic acid, lipid profile target values. More than 100 sources meeting the inclusion criteria were selected and analyzed. Objective of the review: to systematize and critically analyze current approaches to non-pharmacological and pharmacological management of dyslipidemias with a focus on personalized therapeutic strategies and the integration of modern approaches into clinical practice.
Results. The review discusses current pharmacological and non-pharmacological methods for treating dyslipidemia, such as treatment with statins, fibrates, PCSK9 inhibitors, and changes in dietary habits. Particular attention is given to the role of bempedoic acid due to the limited experience with its use in combined lipid disorder management.
Conclusions. The implementation of combination therapy for the correction of dyslipidemia is a promising approach to improving treatment effectiveness and patient outcomes. Further integration of non-drug interventions into clinical practice and addressing the accessibility of new treatment methods are necessary.

About the Authors

I. A. Galochkin
City Clinical Hospital No. 25
Russian Federation

Ivan A. Galochkin, cardiologist

1A, Aleksandra Nevskogo st., Novosibirsk, 630075



Yu. S. Bakhareva
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Yulia S. Bakhareva, junior researcher, laboratory of clinical, population based and preventive research on internal and endocrine diseases

175/1, Boris Bogatkov st., Novosibirsk, 630089



References

1. Chubykina U.V., Yezhov M.V., Rozhkova T.A., Tamaeva B.M., Sokolov A.A., Ershova A.I. Five-year observation period of patients with homozygous and heterozygous familial hypercholesterolemia in the RENESSANS registry. Atherosclerosis and Dyslipidemia, 2023; 1 (50): 5–18, (In Russ.) doi: 10.34687/2219-8202.JAD.2023.01.0001

2. Stakhneva E.M., Kashtanova E.V., Polonskaya Ya.V., Shramko V.S., Raginо Yu.I. Mechanisms of vascular aging. Bull. Sib. Med., 2022; 21 (2): 186–194. (In Russ.). doi: 10.20538/1682-0363-2022-2-186-194

3. Balatsky A.V., Samokhodskaya L.M., Boytsov S.A., Tkachuk V.A. Association of molecular-genetic factors with signs of instability of atherosclerotic lesions. Rus. J. Cardiol., 2018; (8): 32–38. (In Russ.). doi:10.15829/1560-4071-2018-8-32-38

4. Oleynikov V.E., Khromova A.A., Salyamova L.I., Polezhaeva K.N., Tomashevskaya Yu.A. Arterial stiffness parameters as non-invasive markers of ischemic heart disease in young adults. Atherosclerosis and Dyslipidemias, 2023; 3 (52): 44–51. (In Russ.) doi: 10.34687/2219 –8202.JAD.2023.03.0005

5. Ershova A.I., Balakhonova T.V., Ivanova A.A. The problem of cardiovascular risk stratification depending on the severity of atherosclerosis of the carotid and femoral arteries. Cardiovascular Therapy and Prevention, 2020; 19 (2): 75–81 (In Russ.). doi: 10.15829/1728-88002020-2441

6. Khlynova O.V., Shishkina E.A., Abgarian N.I. Cytokine status of a patient with myocardial infarction as a possible predictor of the degree of coronary atherosclerosis. Kardiovaskuliar Terapiy and Profilaktika, 2020; 19 (3): 155–160. (In Russ.). doi: 10.22263/2312-4156.2020.19 (3).155-60

7. Ascaso J.F., Civeira F., Guijarro C., López Miranda J., Masana L., Mostaza J.M., Pedro-Botet J., Pintó X., Valdivielso P. Indications of PCSK9 inhibitors in clinical practice. Recommendations of the Spanish Sociey of Arteriosclerosis (SEA), 2019. Clin. Investig. Arterioscler., 2019; 31 (3): 128–139. doi: 10.1016/j.arteri.2019.04.002

8. Hao Q., Aertgeerts B., Guyatt G., Bekkering G.E., Vandvik P.O., Khan S.U., Rodondi N., Jackson R., Reny J.L., Al Ansary L., van Driel M., Assendelft W.J.J., Agoritsas T., Spencer F., Siemieniuk R.A.C., Lytvyn L., Heen A.F., Zhao Q., Riaz I.B., Ramaekers D., Okwen P.M., Zhu Y., Dawson A., Ovidiu M.C., Vanbrabant W., Li S., Delvaux N. PCSK9 inhibitors and ezetimibe for the reduction of cardiovascular events: a clinical practice guideline with riskstratified recommendations. B.M.J., 2022; 377: e069066. doi: 10.1136/bmj-2021-069066

9. Korneva V.A., Kuznetsova T.Y. Features of the management of patients during changing the drugs that affect proprotein convertase subtilisin/kexin type 9 (PCSK9). Kardiologiia, 2025; 65 (6): 74–80. doi: 10.18087/cardio.2025.6.n2950

10. Lucchi T., Cesari M., Vergani C. Dislipidemia and lipid lowering drugs: from guidelines to clinical practice. An updated review of the literature. Recenti. Prog. Med., 2020. Jul–Aug; 111 (7): 426–443. doi: 10.1701/3407.33925

11. Sergienko I.V., Ezhov M.V., Gurevich V.S., Zafiraki V.K., Barov P.A., Tsygankova O.V. Comparative efficacy and safety of statins monotherapy and their combination with ezetimibe Results of the Russian retrospective observational study UNISON. Atherosclerosis and dyslipidemia, 2022; 4 (49): 25–38. (In Russ.) doi: 10.34687/2219-8202. JAD.2022.04.0003

12. Alloubani A, Nimer R, Samara R. Relationship between Hyperlipidemia, Cardiovascular Disease and Stroke: A Systematic Review. Curr. Cardiol. Rev., 2021; (6): e051121189015. doi: 10.2174/1573403X16999201210200342

13. Garg A., Radhakrishnan S. Pediatric hyperlipidemia. Indian Heart. J., 2024; 76 Suppl 1 (Suppl 1): S104–S107. doi: 10.1016/j.ihj.2023.11.269

14. Lazarte J., Hegele R.A. Volanesorsen for treatment of familial chylomicronemia syndrome. Expert. Rev. Cardiovasc. Ther., 2021; 19 (8): 685–693. doi: 10.1080/14779072.2021.1955348

15. Pedro-Botet J., Climent E., Gabarró N., Millán J. Familial combined hyperlipidaemia/polygenic mixed hyperlipidaemia. Clin Investig Arterioscler., 2021. May; 33 Suppl 2: 43–49. doi: 10.1016/j.arteri.2020.12.013

16. Blasco M., Ascaso J.F. En representación del grupo de Dislipidemia Aterogénica de la SEA. Control of the overall lipid profile. Clin. Investig. Arterioscler., 2019. Dec. 31; Suppl. 2: 34–41. doi: 10.1016/j.arteri.2019.10.002

17. Wilkinson M.J., Shapiro M.D. Immune-Mediated Inflammatory Diseases, Dyslipidemia, and Cardiovascular Risk: A Complex Interplay. Arterioscler. Thromb. Vasc. Biol., 2024. Dec.; 44 (12): 2396–2406. doi: 10.1161/ATVBAHA.124.319983

18. Capuozzo M., Ottaiano A., Cinque C., Farace S., Ferrara F. Cutting-edge lipid-lowering pharmacological therapies: Improving lipid control beyond statins. Hipertens. Riesgo Vasc., 2025; 42 (2): 116–127. doi: 10.1016/j.hipert.2024.12.002

19. Ruscica M., Sirtori C.R., Carugo S., Banach M., Corsini A. Bempedoic Acid: for Whom and When. Curr. Atheroscler. Rep., 2022. Oct.; 24 (10): 791–801. doi: 10.1007/s11883-022-01054-2

20. Masson W., Barbagelata L., Lobo M., Nogueira J.P. Bempedoic acid in patients with type 2 diabetes Rev. Clin. Esp. (Barc.), 2022; 222 (4): 251–253. doi: 10.1016/j.rceng.2021.11.003

21. Nissen S.E., Lincoff A.M., Brennan D., Ray K.K., Mason D., Kastelein J.J.P., Thompson P.D., Libby P., Cho L., Plutzky J., Bays H.E., Moriarty P.M., Menon V., Grobbee D.E., LouieM.J., Chen C.F., Li N., Bloedon L., Robinson P., Horner M., Sasiela W.J., McCluskey J., Davey D., Fajardo-Campos P., Petrovic P., Fedacko J., Zmuda W., Lukyanov Y., Nicholls S.J.; CLEAR Outcomes Investigators. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N. Engl. J. Med., 2023. Apr. 13; 388 (15): 1353–1364. doi: 10.1056/NEJMoa2215024

22. Nicholls S.J., Nelson A.J., Lincoff A.M., Brennan D., Ray K.K., Cho L., Menon V., Li N., Bloedon L., Nissen S.E. Impact of Bempedoic Acid on Total Cardiovascular Events: A Prespecified Analysis of the CLEAR Outcomes Randomized Clinical Trial. JAMA Cardiol. 2024. Mar. 1; 9 (3): 245–253. doi: 10.1001/jamacardio.2023.5155

23. Syed-Abdul M.M., Tian L., Hegele R.A., Lewis G.F. Futility of plasmapheresis, insulin in normoglycaemic individuals, or heparin in the treatment of hypertriglyceridaemiainduced acute pancreatitis. Lancet Diabetes Endocrinol., 2025; 13 (6): 528–536. doi: 10.1016/S2213-8587(25)00028-2

24. Wagner M., Leefmann J., Künzel S.R., Schmidt M.M., ElArmouche A. Bempedoinsäure [Bempedoic Acid]. Dtsch. Med. Wochenschr., 2021. Apr.; 146 (8): 552–558. doi: 10.1055/a-1136-4356

25. Yamashita S., Kiyosue A., Fujita H., Yokota D., Nakamura Y., Yasuda S. Efficacy and safety of bempedoic acid in japanese patients with hypercholesterolemia – a randomized, double-blind, placebo-controlled phase 3 study (the CLEAR-J Trial). Circ. J., 2025; 89 (8): 1256–1265. doi: 10.1253/circj.CJ-25-0089

26. Ballantyne C.M., Bays H., Catapano A.L., Goldberg A., Ray K.K., Saseen J.J. Role of bempedoic acid in clinical practice. Cardiovasc. Drugs Ther., 2021; 35 (4): 853–864. doi: 10.1007/s10557-021-07147-5

27. Kuwabara M., Sasaki J., Ouchi Y., Oikawa S., Nakagawa K., Sato M., Koba S., Kono S., Saikawa T., Arai H. Higher cholesterol absorption marker at baseline predicts fewer cardiovascular events in elderly patients receiving hypercholesterolemia treatment: The KEEP Study. J. Am. Heart. Assoc., 2024; 13 (3): e031865. doi: 10.1161/JAHA.123.031865

28. 28. Makhmudova U., Schulze P.C., Davis H.R., Weingärtner O. Lipid lowering in patients 75 years and older. World J. Cardiol., 2021; 13 (10): 526–532. doi: 10.4330/wjc.v13.i10.526

29. Albosta M., Grant J.K., Michos E.D. Bempedoic Acid: Lipid Lowering for Cardiovascular Disease Prevention. Heart Int., 2023. Nov. 1; 17 (2): 27–34. doi: 10.17925/HI.2023.17.2.1.

30. Basurto M.L., Abdo-Francis M., Aguilar-Salinas C.A., Balcázar-Hernández L.J., Borrayo-Sánchez G., Castro-Narro G.E., Chávez-Negrete A., Díaz-Aragón A., Enciso-Muñoz J.M., Fernández-Barros C., Ferreira-Hermosillo A., GonzálezChávez A., Guerra-López A., Gómez-Díaz R., Molina-Ayala M., Rodríguez-Gilabert C., Ruiz-Gastelum E., Tomás-López J.C., Vargas-Sánchez H.R., Ruiz-Gastelum E. Dyslipidemia: recommendations for diagnosis and treatment at the first level of medical contact. Gac. Med. Mex., 2024; 160 (4): 354–362. doi: 10.24875/GMM.M24000916

31. Ferrara F., Zovi A., Langella R., Panico A., Scognamiglio M., Trama U., Nava E., Capuozzo M., Primiano F., Russo G. The sustainability of hypercholesterolemia treatment: New drugs have made such therapy more expensive. Hipertens. Riesgo Vasc. 2025. Aug 16; S1889–1837(25)00048-0. doi: 10.1016/j.hipert.2025.05.002

32. Kiss L., Fűr G., Pisipati S., Rajalingamgari P., Ewald N., Singh V., Rakonczay Z. Jr. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol. (Oxf.), 2023. Mar; 237 (3): e13916. doi: 10.1111/apha.13916

33. Fruchart J.C., Fruchart-Najib J., Yamashita S., Libby P., Yokote K., Kodama T., Tomita Y., Ridker P.M., Hermans M.P., Zambon A. Lessons from PROMINENT and prospects for pemafibrate. Cardiovasc. Diabetol., 2024. Jul 29; 23 (1): 279. doi: 10.1186/s12933-024-02305

34. Neilan T.G., Quinaglia T., Onoue T., Mahmood S.S., Drobni Z.D., Gilman H.K., Smith A., Heemelaar J.C., Brahmbhatt P., Ho J.S., Sama S., Svoboda J., Neuberg D.S., Abramson J.S., Hochberg E.P., Barnes J.A., Armand P., Jacobsen E.D., Jacobson C.A., Kim A.I., Soumerai J.D., Han Y., Friedman R.S., Lacasce A.S., Ky B., Landsburg D., Nasta S., Kwong R.Y., Jerosch-Herold M., Redd R.A., Hua L., Januzzi J.L., Asnani A., Mousavi N., Scherrer-Crosbie M. Atorvastatin for Anthracycline-Associated Cardiac Dysfunction: The STOP-CA Randomized Clinical Trial. JAMA, 2023. Aug 8; 330 (6): 528–536. doi: 10.1001/jama.2023.11887

35. Juhasz V., Quinaglia T., Drobni Z.D., Heemelaar J.C., Neuberg D.S., Han Y., Ky B., Kwong R.Y., Januzzi J.L, Asnani A., Redd R.A., Mousavi N., Jerosch-Herold M., Scherrer-Crosbie M., Neilan T.G. Atorvastatin and Myocardial Extracellular Volume Expansion During Anthracycline-Based Chemotherapy. JACC Cardio Oncol., 2025. Feb; 7 (2): 125–137. doi: 10.1016/j.jaccao.2024.11.008

36. Nabati M., Janbabai G., Esmailian J., Yazdani J. Effect of rosuvastatin in preventing chemotherapy-induced cardiotoxicity in women with breast cancer: a randomized, singleblind, pla-cebo-controlled trial. J. Cardiovasc. Pharmacol. Ther., 2019; 24: 233–241. doi: 10.1177/1074248418821721

37. Hundley W.G., D’Agostino R. Jr., Crotts T., Craver K., Hackney M.H., Jordan J.H, Statins and left ventricular ejection fraction following doxorubicin treatment. NEJM Evid., 2022; 1: 10. doi:10.1056/EVIDoa2200097

38. Thavendiranathan P., Houbois C., Marwick T.H., Kei T., Saha S., Runeckles K. Statins to prevent early cardiac dysfunction in cancer patients at increased cardiotoxicity risk receiving anthracyclines. Eur. Heart J. Cardiovasc. Pharmacother., 2023; 9: 515–525. doi:10.1093/ehjcvp/pvad031

39. Lyon A.R., López-Fernández T., Couch L.S., Asteggiano R., Aznar M.C., Bergler-Klein J., 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022; 43: 4229–361. doi: 10.1093/eurheartj/ehac24439.

40. Wojda A., Janczy A., Małgorzewicz S. Mediterranean, vegetarian and vegan diets as practical outtakes of EAS and ACC/AHA recommendations for lowering lipid profile. Acta Biochim. Pol., 2021. Feb 5; 68 (1): 41–48. doi: 10.18388/abp.2020_5515

41. Qiu L., Xie M., Zhou M., Liu X., Hu Z., Wu L. Restoration of FVIII Function and Phenotypic Rescue in Hemophilia A Mice by Transplantation of MSCs Derived From F8-Modified iPSCs. Front Cell Dev. Biol., 2021. Feb 11; 9: 630353. doi: 10.3389/fcell.2021.630353

42. Sun Y., Wang J., Guo X., Zhu N., Niu L., Ding X., Xie Z., Chen X., Yang F. Oleic Acid and Eicosapentaenoic Acid Reverse Palmitic Acid-induced Insulin Resistance in Human HepG2 Cells via the Reactive Oxygen Species/JUN Pathway. Genom. Proteom. Bioinformat., 2021; 19 (5): 754–771. doi: 10.1016/j.gpb.2019.06.005

43. Tomczyk M., Heileson J.L., Babiarz M., Calder P.C. Athletes Can Benefit from Increased Intake of EPA and DHAEvaluating the Evidence. Nutrients, 2023;15 (23): 4925. doi: 10.3390/nu15234925

44. Miyauchi K., Iwata H., Nishizaki Y., Inoue T., Hirayama A., Kimura K., Ozaki Y., Murohara T., Ueshima K., Kuwabara Y., Tanaka-Mizuno S., Yanagisawa N., Sato T., Daida H.; RESPECT-EPA Investigators. Randomized Trial for Evaluation in Secondary Prevention Efficacy of Combination Therapy-Statin and Eicosapentaenoic Acid (RESPECTEPA). Circulation, 2024. Aug 6; 150 (6): 425–434. doi: 10.1161/CIRCULATIONAHA.123.065520

45. D’Andrea E., Hey S.P., Ramirez C.L., Kesselheim A.S. Assessment of the role of niacin in managing cardiovascular disease outcomes: a systematic review and meta-analysis. JAMA Netw. Open, 2019; 2 (4): e192224. doi:10.1001/ jamanetworkopen.2019.2224

46. Zubielienė K., Valterytė G., Jonaitienė N., Žaliaduonytė D., Zabiela V. Familial Hypercholesterolemia and Its Current Diagnostics and Treatment Possibilities: A Literature Analysis. Medicina (Kaunas), 2022. Nov 17; 58 (11): 1665. doi: 10.3390/medicina581116657

47. Wierzbicki A.S., Kim E.J., Esan O., Ramachandran R. Hypertriglyceridaemia: an update. J. Clin. Pathol., 2022. Dec; 75 (12): 798–806. doi: 10.1136/jclinpath-2021-207719.

48. Wu P., Yao Y., Kang H., Wang B., Cheng Y., Su X. Molecular Linkage under the Bicuspid Aortic Valve with Dyslipidemia. Front Biosci. (Landmark Ed.), 2023. Feb 22; 28 (2): 32. doi: 10.31083/j.fbl2802032

49. Diederichsen A., Lindholt J.S., Møller J.E., Gerke O., Rasmussen L.M., Dahl J.S. Sex Differences in Factors Associated With Progression of Aortic Valve Calcification in the General Population. Circ. Cardiovasc. Imaging, 2022;15 (1): e013165. doi: 10.1161/CIRCIMAGING.121.013165

50. Moscarelli M., Paparella D., Angelini G.D., Giannini F., Contegiacomo G., Marchese A., Nasso G., Albertini A., Fattouch K., Speziale G. The influence of metabolic syndrome in heart valve intervention. A multi-centric study. J. Card. Surg., 2022. Dec; 37 (12): 5063–5072. doi: 10.1111/jocs.17204

51. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L. 2019 ESC/ EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020; 41: 111–188. doi: 10.1093/eurheartj/ehz455

52. Kalstad A.A., Myhre P.L., Laake K., Tveit S.H., Schmidt E.B., Smith P. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation, 2021; 143: 528–539. doi: 10.1161/CIRCULATIONAHA.120. 052209

53. Laffin L.J., Bruemmer D., Garcia M., Brennan D.M., McErlean E., Jacoby D.S. Comparative effects of low-dose rosuvastatin, placebo, and dietary supplements on lipids and inflammatory biomarkers. J. Am. Coll. Cardiol., 2023; 81: 1–12. doi:10.1016/j.jacc.2022.10.013

54. O'Bryan E., McKay C.D., Eades S., Gubhaju L., Pearson O., Kerr J.A., Brown A., Azzopardi P.S. Cardiometabolic risk markers for aboriginal and torres strait islander children and youths: a systematic review of data quality and population prevalence. Int. J. Environ. Res. Public. Health, 2023. Jun 26; 20 (13): 6228. doi: 10.3390/ijerph20136228. PMID: 37444076; PMCID: PMC10341665

55. Zhuang H., Lin Z., Zeng S., Jiang M., Chen L., Jiang X., Xu Y. Dyslipidemia may be a risk factor for progression in children with IgA nephropathy. Pediatr. Nephrol., 2022; 37 (12): 3147–3156. doi: 10.1007/s00467-022-05480-x

56. Tom K.N., Polack A.M., de Silva N.D., Wong J.P., KeownStoneman C.D.G., Maguire J.L., Birken C.S., Wong P.D. Childhood dyslipidemia: Clinician management practices in the primary care setting. Paediatr. Child. Health, 2024; 29 (8): 507–513. doi: 10.1093/pch/pxae018

57. Государственный Реестр лекарственных средств, http://www.grls.rosminzdrav.ru

58. Ezhov M.V., Kukharchuk V.V., Sergienko I.V. Disorders of lipid metabolism. Clinical Guidelines 2023. Russ. J. Cardiol., 2023; 28 (5): 5471. (In Russ.) doi: 10.15829/1560-4071-2023-5471

59. Cholesterol Treatment Trialists' Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet, 2019; 393 (10170): 407–415. doi:10.1016/S0140-6736(18)31942-1

60. Bao A., Karalis D.G. Statin Therapy for Primary and Secondary Prevention in Older Adults. Curr. Atheroscler. Rep., 2024; 27 (1): 11. doi: 10.1007/s11883-024-01257-9

61. Colhoun H.M., Betteridge D.J., Durrington P.N., Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet, 2020; 364 (9435): 685–696. doi:10.1016/S0140-6736(04)16895-5

62. Neil H.A., DeMicco D.A., Luo D. Analysis of efficacy and safety in patients aged 65-75 years at randomization: Collaborative Atorvastatin Diabetes Study (CARDS). Diabetes Care, 2020; 29 (11): 2378–2384. doi: 10.2337/dc06-0872

63. Theofilis P., Vordoni A., Koukoulaki M., Vlachopanos G., Kalaitzidis R.G. Dyslipidemia in Chronic Kidney Disease: Contemporary Concepts and Future Therapeutic Perspectives. Am. J. Nephrol., 2021; 52 (9): 693–701. doi: 10.1159/000518456

64. Scurt F.G., Ganz M.J., Herzog C., Bose K., Mertens P.R., Chatzikyrkou C. Association of metabolic syndrome and chronic kidney disease. Obes. Rev., 2024; 25(1): e13649. doi: 10.1111/obr.13649

65. Theofilis P., Vlachakis P.K., Karakasis P., Kalaitzidis R.G. Managing Dyslipidemia in Chronic Kidney Disease: Implications for Cardiovascular and Renal Risk. Curr. Atheroscler. Rep., 2025. 21; 27 (1): 41. doi: 10.1007/s11883-025-01290-2

66. Shah A.S.V., Stelzle D., Lee K.K., Beck E.J., Alam S., Clifford S. Global burden of atherosclerotic cardiovascular disease in people living with HIV: systematic review and meta-analysis. Circulation, 2018; 138: 1100–1112. doi: 10.1161/CIRCULATIONAHA.117.033369

67. Ntsekhe M., Baker J.V. Cardiovascular disease among persons living with HIV: new in sights into pathogenesis and clinical manifestations in a global context. Circulation, 2023; 147: 83–100. doi: 10.1161/CIRCULATIONAHA.122.057443

68. Triant V.A., Perez J., Regan S., Massaro J.M., Meigs J.B., Grinspoon S.K. Cardiovascular risk prediction functions underestimate risk in HIV infection. Circulation, 2018; 137: 2203–2214. doi: 0.1161/CIRCULATIONAHA.117.028975

69. Kentoffio K., Temu T.M., Shakil S.S., Zanni M.V., Longenecker C.T. Cardiovascular disease risk in women living with HIV. Curr. Opin. HIV AIDS, 2022; 17: 270–278. doi: 10. 1097/COH.0000000000000756

70. Saeedi R., Johns K., Frohlich J., Bennett M.T., Bondy G. Lipid lowering efficacy and safety of ezetimibe combined with rosuvastatin compared with titrating rosuvastatin mono therapy in HIV-positive patients. Lipids Health Dis., 2015; 14: 57. doi: 10. 1186/s12944-015-0054-x

71. Boccara F., Kumar P.N., Caramelli B., Calmy A., Lopez J.A.G., Bray S. Evolocumab in HIV-infected patients with dyslipidemia: primary results of the randomized, double- blind BEIJERINCK study. J. Am. Coll. Cardiol., 2020; 75: 2570–2584. doi: 10.1016/ j.jacc.2020.03.025

72. Cardozo F.A.M., Bichuette L.D., Caramelli B. Evolocumab for the reduction of cardiovascular risk in HIV patients: is this a clinician's best option for HIV patients? Expert Rev. Cardiovasc. Ther., 2025. Jan–Feb; 23 (1-2): 15–21. doi: 10.1080/14779072.2025.2463348

73. Bahiru E., Hsiao R., Phillipson D., Watson K.E. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr. Cardiol. Rep., 2021; 23 (4): 26. doi: 10.1007/s11886-021-01455-w

74. Bays H.E., Kirkpatrick C.F., Maki K.C., Toth P.P., Morgan R.T., Tondt J., Christensen S.M., Dixon D.L., Jacobson T.A. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. J. Clin. Lipidol., 2024; 18 (3): e320–e350. doi: 10.1016/j.jacl.2024.04.001

75. Su X., Chen X., Peng H., Song J., Wang B., Wu X. Novel insights into the pathological development of dyslipidemia in patients with hypothyroidism. Bosn. J. Basic Med. Sci., 2022; 22 (3): 326–339. doi: 10.17305/bjbms.2021.6606

76. Su X., Peng H., Chen X., Wu X., Wang B. Hyperlipidemia and hypothyroidism. Clin. Chim. Acta., 2022; 527: 61–70. doi: 10.1016/j.cca.2022.01.006

77. Kochan Z., Szupryczynska N., Malgorzewicz S., Karbowska J. Dietary Lipids and Dyslipidemia in Chronic Kidney Disease. Nutrients, 2021. Sep 9; 13 (9): 3138. doi: 10.3390/nu13093138

78. Kirkpatrick C.F., Sikand G., Petersen K.S., Anderson C.A.M., Aspry K.E., Bolick J.P., Kris-Etherton P.M., Maki K.C. Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association. J. Clin. Lipidol., 2023. Jul–Aug; 17 (4): 428–451. doi: 10.1016/j.jacl.2023.05.099

79. Berisha H., Hattab R., Comi L., Giglione C., Migliaccio S., Magni P. Nutrition and Lifestyle Interventions in Managing Dyslipidemia and Cardiometabolic Risk. Nutrients, 2025 Feb 23; 17 (5): 776. doi: 10.3390/nu17050776

80. Osadnik T., Goławski M., Lewandowski P., Morze J., Osadnik K., Pawlas N., Lejawa M., Jakubiak G.K., Mazur A., Schwingschackl L., Gąsior M., Banach M. A network metaanalysis on the comparative effect of nutraceuticals on lipid profile in adults. Pharmacol. Res., 2022. Sep; 183: 106402. doi: 10.1016/j.phrs.2022.106402

81. Cicero A.F.G., Fogacci F., Stoian A.P., Toth P.P. Red Yeast Rice for the Improvement of Lipid Profiles in Mild-to-Moderate Hypercholesterolemia: A Narrative Review. Nutrients, 2023. May 12; 15 (10): 2288. doi: 10.3390/nu15102288

82. Chait A. Hypertriglyceridemia. Endocrinol. Metab. Clin. North Am. 2022. Sep; 51 (3): 539–555. doi: 10.1016/j.ecl.2022.02.010

83. Patel S.B., Wyne K.L., Afreen S., Belalcazar L.M., Bird M.D., Coles S., Marrs J.C., Peng C.C., Pulipati V.P., Sultan S., Zilbermint M. American Association of Clinical Endocrinology Clinical Practice Guideline on Pharmacologic Management of Adults With Dyslipidemia. Endocr. Pract., 2025. Feb; 31 (2): 236–262. doi: 10.1016/j.eprac.2024.09.016

84. Mosteoru S., Gaiţă L., Gaiţă D. Sport as Medicine for Dyslipidemia (and Other Risk Factors). Curr. Atheroscler. Rep. 2023. Sep; 25 (9): 613–617. doi: 10.1007/s11883-023-01133-y

85. Laffin L.J., Bruemmer D., Garcia M., Brennan D.M., McErlean E., Jacoby D.S., Michos E.D., Ridker P.M., Wang T.Y., Watson K.E., Hutchinson H.G., Nissen S.E. Comparative Effects of Low-Dose Rosuvastatin, Placebo, and Dietary Supplements on Lipids and Inflammatory Biomarkers. J. Am. Coll. Cardiol., 2023. Jan 3; 81 (1): 1–12. doi: 10.1016/j.jacc.2022.10.013

86. Lôbo I.M.B., Bordallo C.O.S., Sacramento J.M., Leite L.O., Santana P.D.S. Phytosterol supplementation in capsules or tablets as adjunctive treatment for hypercholesterolemia: A systematic review of randomized controlled trials. Clin. Nutr. ESPEN, 2023. Oct; 57: 718–729. doi: 10.1016/j.clnesp.2023.08.022

87. Stellaard F., Lütjohann D. Phytosterol-Enriched Dietary Supplements for Lowering Plasma LDL-Cholesterol: Yes or No? Nutrients, 2025. Feb 12; 17 (4): 654. doi: 10.3390/nu17040654


Review

For citations:


Galochkin I.A., Bakhareva Yu.S. Dyslipidemia: current approaches to pharmacological and non-pharmacological management. Ateroscleroz. 2025;21(4):440-452. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-4-440-452

Views: 50

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)