Variants in the LDLR and the APOB genes in patients with familial hypercholesterolemia in the Republic of Sakha (Yakutia)
https://doi.org/10.52727/2078-256X-2025-21-4-368-380
Abstract
The aim of the study. Molecular genetic studies of familial hypercholesterolemia (FH) have been conducted in different regions of the Russian Federation for several decades. However, limited ethnic diversity in patient samples does not permit a comprehensive assessment of the full spectrum of gene variability responsible for FH development in the Russian population. The aim of this study was to characterize the molecular heterogeneity of the LDLR and APOB genes in patients with FH phenotype in the Republic of Sakha (Yakutia).
Material and methods. A group of 48 patients with FH was enrolled at the Department of Lipid Disorders, Republican Clinical Hospital No. 3, Yakutsk. FH diagnosis was established using the Dutch Lipid Clinic Network (DLCN) Criteria. All patients underwent clinical examination, ultrasonographic evaluation, and blood sampling for biochemical and molecular genetic analyses. Molecular variants in index patients and segregation analysis in available family members were identified using direct automated Sanger sequencing of the LDLR gene promoter and all exons, as well as exon 26 of the APOB gene.
Results. Pathogenic variants in the LDLR gene were identified in three index patients with the FH phenotype. Segregation analysis in families of index patients identified three additional carriers of the rs121908038 variant among first-degree relatives. Based on direct automated sequencing of exon 26 of the APOB gene, a pathogenic variant (rs5742904) was identified in one index patient and three of his first-degree relatives.
Conclusions. Molecular genetic analysis of the LDLR gene and exon 26 of the APOB gene in patients with the FH phenotype from the Republic of Sakha (Yakutia) identified pathogenic variants in two genes. Heterozygous familial hypercholesterolemia was confirmed in index patients and segregated among first-degree relatives. These findings underscore the importance of genetic testing and family screening in FH diagnosis and management.
About the Authors
A. V. PavlovaRussian Federation
Anna V. Pavlova, chief cardiologist of center for predictive medicine and bioinformatics
94, Gorkogo st., Yakutsk, Republic of Sakha (Yakutia), 677027
S. S. Mestnikova
Russian Federation
Sargylana S. Mestnikova, chief cardiologist of center for predictive medicine and bioinformatics
94, Gorkogo st., Yakutsk, Republic of Sakha (Yakutia), 677027
S. S. Everstova
Russian Federation
Selena S. Everstova, assistant of department of hospital therapy, occupational diseases and clinical pharmacology of Medical institute
58, Belinskogo st., Yakutsk, Republic of Sakha (Yakutia), 677000;
therapist of center for predictive medicine and bioinformatics
94, Gorkogo st., Yakutsk, Republic of Sakha (Yakutia), 677027
A. S. Asekritova
Russian Federation
Alexandra S. Asekritova, head of center for predictive medicine and bioinformatics
94, Gorkogo st., Yakutsk, Republic of Sakha (Yakutia), 677027;
сandidate of medical sciences, associate professor of the Department of therapy, Institute of Medicine
58, Belinskogo st., Yakutsk, Republic of Sakha (Yakutia), 677000
O. V. Tatarinova
Russian Federation
Olga V. Tatarinova, PhD, MD, chief physician;
Leading researcher
94, Gorkogo st., Yakutsk, Republic of Sakha (Yakutia), 677027;
6/3, Yaroslavskaya st., Yakutsk, Republic of Sakha (Yakutia), 677000
E. S. Kylbanova
Russian Federation
Elena S. Kylbanova, PhD, MD, head of the Department of therapy
58, Belinskogo st., Yakutsk, Republic of Sakha (Yakutia), 677000
D. E. Ivanoshchuk
Russian Federation
Dinara E. Ivanoshchuk, junior researcher at the laboratory of human molecular genetics
10, Akademika Lavrentyeva ave., Novosibirsk, 630090
V. V. Zorina
Russian Federation
Valentina V. Zorina, junior researcher at the laboratory of the study of monogenic forms of common human diseases
10, Akademika Lavrentyeva ave., Novosibirsk, 630090
S. S. Semaev
Russian Federation
Sergey S. Semaev, junior researcher at the laboratory of the study of monogenic forms of common human diseases
10, Akademika Lavrentyeva ave., Novosibirsk, 630090
E. V. Shakhtshneider
Russian Federation
Elena V. Shakhtshneider, PhD, MD, leading researcher, head of the laboratory of the study of monogenic forms of common human diseases
10, Akademika Lavrentyeva ave., Novosibirsk, 630090
References
1. Ezhov M.V., Bazhan S.S., Ershova A.I., Meshkov A.N., Sokolov A.A., Kukharchuk V.V., Gurevich V.S., Voevoda M.I., Sergienko I.V., Shakhtshneider E.V., Pokrovsky S.N., Konovalov G.A., Leontyeva I.V., Konstantinov V.O., Shcherbakova M.Yu., Zakharova I.N., Balakhonova T.V., Filippov A.E., Akhmedzhanov N.M., Aleksandrova O.Yu., Lipovetsky B.M. Clinical guidelines for familial hypercholesterolemia. Ateroscleroz, 2019; 15 (1): 58–98. (In Russ.).
2. di Taranto M.D., Fortunato G. Genetic heterogeneity of Familial hypercholesterolemia: repercussions for molecular diagnosis. Int. J. Mol. Sci., 2023; 24 (4): 3224. doi: https://doi.org/10.3390/ijms24043224
3. Akioyamen L.E., Genest J., Shan S.D., Reel R.L., Albaum J.M., Chu A., Tu J.V. Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis. BMJ Open, 2017; 7 (9): e016461. doi: 10.1136/bmjopen-2017-016461
4. MeshkovA.N., Ershova A.I., Shalnova S.A., Alieva A.S., Bazhan S.S., Barbarash O.L., Bogdanov D.Yu., Viktorova I.A., Grinshtein Yu.I.,Duplyakov D.V., Kalachikova O.N., KontsevayaA.V., Libis R.A., Medvedeva I.V., Nevzorova V.A., Prishchepa N.N., Rotar O.P., Serebryakova V.N., Trubacheva I.A., Chernykh T.M., Shutemova E.A., Drapkina O.M., Boytsov S.A. Cross-sectional Study to Estimate the Prevalence of Familial Hypercholesterolemia in Selected Regions of the Russian Federation: Relevance, Design of the Study and Initial Characteristics of the Participants. Rational Pharmacotherapy in Cardiology, 2020; 16 (1): 24–32. doi: 10.20996/1819-64462020-02-17
5. Santos R.D., Gidding S.S., Hegele R.A., Cuchel M.A., Barter P.J., Watts G.F., Baum S.J., Catapano A.L., Chapman M.J., Defesche J.C., Folco E., Freiberger T., Genest J., Hovingh G.K., Harada-Shiba M., Humphries S.E., Jackson A.S., Mata P., Moriarty P.M., Raal F.J., Al-Rasadi K., Ray K.K., Reiner Z., Sijbrands E.J., Yamashita S.; International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Defining severe familial Hypercholesterolemia and the implications for clinical management: A consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes Endocrinol., 2016; 4 (10): 850–861. doi: 10.1016/S2213–858730041–9
6. Borén J., Chapman M.J., Krauss R.M., Packard C.J., Bentzon J.F., Binder C.J., Daemen M.J., Demer L.L., Hegele R.A., Nicholls S.J., Nordestgaard B.G., Watts G.F., Bruckert E., Fazio S., Ference B.A., Graham I., Horton J.D., Landmesser U., Laufs U., Masana L., Pasterkamp G., Raal F.J., Ray K.K., Schunkert H., Taskinen M.R., van de Sluis B., Wiklund O., Tokgozoglu L., Catapano A.L., Ginsberg H.N. Low-density lipoproteins cause atherosclerotic cardiovas cular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart. J., 2020; 41 (24): 2313–2330. doi: 10.1093/eurheartj/ehz962
7. Wiegman A. Lipid Screening, Action, and Follow-up in Children and Adolescents. Curr. Cardiol. Rep., 2018; 20 (9): 80. doi:10.1007/s11886–018–1014–7
8. Ezhov M.V., Kukharchuk V.V., Sergienko I.V., Alieva A.S., Antsiferov M.B., Ansheles A.A., Arabidze G.G., Aronov D.M., Arutyunov G.P., Akhmedzhanov N.M., Balakhonova T.V., Barbarash O.L., Boytsov S.A., Bubnova M.G., Voevoda M.I., Galstyan G.R., Galyavich A.S., Gornyakova N.B., Gurevich V.S., Dedov I.I., Drapkina O.M., Duplyakov D.V., Eregin S.Ya., ErshovaA.I., Irtyuga O.B., Karpov S.R., Karpov Yu.A., Kachkovsky M.A., Kobalava Zh.D., Koziolova N.A., Konovalov G.A., Konstantinov V.O., Kosmacheva E.D., Kotovskaya Yu.V., MartynovA.I., Meshkov A.N., Nebieridze D.V., Nedogoda S.V., Obrezan A.G., Oleinikov V.E., Pokrovsky S.N., Ragino Yu.I., Rotar O.P., Skibitsky V.V., Smolenskaya O.G., Sokolov A.A., Sumarokov A.B., Filippov A.E., Khalimov Yu.Sh., Chazova I.E., Shaposhnik I.I., Shestakova M.V., Yakushin S.S., Shlyakhto E.V. Disorders of lipid metabolism. Clinical Guidelines 2023. Rus. J. Cardiol., 2023; 28 (5): 5471. (In Russ.). doi: 10.15829/1560-4071-2023-5471
9. Shakhtshneider E., Ivanoshchuk D., Timoshchenko O., Orlov P., Semaev S., Valeev E., Goonko A., Ladygina N., Voevoda M. Analysis of Rare Variants in Genes Related to Lipid Metabolism in Patients with Familial Hypercholesterolemia in Western Siberia (Russia). J. Pers. Med., 2021; 11 (11): 1232. doi: 10.3390/jpm11111232
10. Meshkov A., Ershova A., Kiseleva A., Zotova E., Sotnikova E., Petukhova A., Zharikova A., Malyshev P., RozhkovaT., Blokhina A., Limonova A., Ramensky V., Divashuk M., Khasanova Z., Bukaeva A., Kurilova O., Skirko O., Pokrovskaya M., Mikova V., Snigir E., Akinshina A., Mitrofanov S., Kashtanova D., Makarov V., Kukharchuk V., Boytsov S., Yudin S., Drapkina O. The LDLR, APOB, and PCSK9 Variants of Index Patients with Familial Hypercholesterolemia in Russia. Genes (Basel), 2021; 12 (1): 66. doi: org/10.3390/genes12010066
11. Vasilyev V., Zakharova F., Bogoslovskay T., Mandelshtam M. Familial Hypercholesterolemia in Russia: Three Decades of Genetic Studies. Front. Genet., 2020; 11: 550591. doi: 10.3389/fgene.2020.550591
12. Zaripova Yu.R., Igo O.L., Mikhaylovskaya E.G., Guseva N.B., Nikitin S.S., Mushkatina M.A., Varlamova T.V., Korneva V.A. Familial hypercholesterolemia in pediatric practice. Voprosy prakticheskoy pediatrii = Clinical Practice in Pediatrics, 2023; 18 (3): 127–132. (In Russ.). doi: 10.20953/1817-7646-2023-3-127-132
13. Tokgozoglu L., Kayikcioglu M. Familial Hypercholesterolemia: Global Burden and Approaches. Curr. Cardiol. Rep., 2021; 23 (10): 151. doi: 10.1007/s11886-021-01565-5
14. Yezhov M.V., Bliznyuk S.A., Tmoyan N.A., Rozhkova T.A., Duplyakov D.V., Salchenko V.A., Kachkovsky M.A., Shaposhnik I.I., Genkel V.V., Gurevich V.S., Urazgildeeva S.А., Tregubov A.V., Muzalevskaya M.V., Bazhan S.S., Timoshchenko O.V., Urvantseva I.A., Kozhokar K.G., Sokolov A.A., Tishko V.V., Boyeva O.I., Bolotova E.V., Namitokov A.M., Kushnaryova Yu.B., Kuznetsova T.Yu., Korneva V.A., Bogdanov D.Yu., Chichina E.E., Solovyov V.M., Ershova A.I., Meshkov A.N., Makogonenko V.I., Galyavich A.S., Sadykova D.I., Pomogaybo B.V., Barbarash O.L., Kashtalap V.V., Shutemova E.A., Isaeva I.G., Khokhlov R.A., Oleynikov V.E., Avdeeva I.V., Malakhov V.V., Chubykina U.V., Konstantinov V.O., Aliyeva A.S., Ovsyannikova V.V., Furmenko G.I., Chernykh T.M., Abashina O.E., Dzhanibekova A.R., Slastnikova E.S., Galimova L.F., Duplyakova P.D., Voyevoda M.I. Register of patients with familial hypercholesterolemia and patients of very high cardiovascular risk with lipid-lowering therapy underperformance (RENESSANS). Rus. J. Cardiol., 2019; (5): 7–13. (In Russ.). doi: 10.15829/1560-4071-2019-5-7-13
15. Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc., 2006; 1: 4455. doi: 10.1101/pdb.prot4455
16. Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., Karapetyan K., Katz K., Liu C., Maddipatla Z., Malheiro A., McDaniel K., Ovetsky M., Riley G., Zhou G., Holmes J.B., Kattman B.L., Maglott D.R. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res., 2018; 46 (D1): D1062–D1067. doi: 10.1093/nar/gkx1153
17. Gudmundsson S., Singer-Berk M., Watts N.A., Phu W., Goodrich J.K., Solomonson M.; Genome Aggregation Database Consortium; Rehm H.L., MacArthur D.G., O’Donnell-LuriaA. Variant interpretation using population databases: Lessons from gnomAD. Hum. Mutat., 2022; 43 (8): 1012–1030. doi: 10.1002/humu.24309
18. Barbitoff Y.A., Khmelkova D.N., Pomerantseva E.A., Slepchenkov A.V., Zubashenko N.A., Mironova I.V., Kaimonov V.S., Polev D.E., Tsay V.V., Glotov A.S., Aseev M.V., Shcherbak S.G., Glotov O.S., Isaev A.A., Predeus A.V. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 7452 exome samples. Natl. Sci. Rev., 2024; 11 (10): nwae326. doi: 10.1093/nsr/nwae326
19. Richards S., Aziz N., Bale S., Bick D., Das S., GastierFoster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med., 2015; 17 (5): 405–424. doi: 10.1038/gim.2015.30
20. Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., Mcveigh R., O’Neill K., Robbertse B., Sharma S., Soussov V., Sullivan J.P., Sun L., Turner S., Karsch-Mizrachi I. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020; 2020: baaa062. doi: 10.1093/database/baaa062
21. di Taranto M.D., Giacobbe C., Fortunato G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur. J. Med. Genet., 2020; 63 (4): 103831. doi: 10.1016/j.ejmg.2019.103831
22. Berberich A.J., Hegele R.A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol., 2019; 16 (1): 9–20. doi: 10.1038/s41569-018-0052-6
23. Zakharova F.M., Damgaard D., Mandelshtam M.Y., Golubkov V.I., Nissen P.H., Nilsen G.G., Stenderup A., Lipovetsky B.M., Konstantinov V.O., Denisenko A.D., Vasilyev V.B., Faergeman O. Familial hypercholesterolemia in St-Petersburg: the known and novel mutations found in the low density lipoprotein receptor gene in Russia. BMC Med. Genet., 2005; 6: 6. doi: 10.1186/1471-2350-6-6
24. Safarova M.S., Klee E.W., Baudhuin L.M., Winkler E.M., Kluge M.L., Bielinski S.J., Olson J.E., Kullo I.J. Variability in assigning pathogenicity to incidental findings: insights from LDLR sequence linked to the electronic health record in 1013 individuals. Eur. J. Hum. Genet., 2017; 25 (4): 410–415. doi: 10.1038/ejhg.2016.193
25. Fouchier S.W., Defesche J.C., Umans-Eckenhausen M.W., Kastelein J.P. The molecular basis of familial hypercholesterolemia in The Netherlands. Hum Genet., 2001; 109 (6): 602–615. doi: 10.1007/s00439-001-0628-8
26. Koivisto U.M., Viikari J.S., Kontula K. Molecular characterization of minor gene rearrangements in Finnish patients with heterozygous familial hypercholesterolemia: identification of two common missense mutations (Gly823-->Asp and Leu380-->His) and eight rare mutations of the LDL receptor gene. Am. J. Hum. Genet. 1995; 57 (4): 789–797.
27. Lee J.D., Hsiao K.M., Wang T.C., Lee T.H., Kuo Y.W., Huang Y.C., Hsu H.L., Lin Y.H., Wu C.Y., Huang Y.C., Lee M., Yang H.T., Hsu C.Y., Pan Y.T. Mutual effect of rs688 and rs5925 in regulating low-density lipoprotein receptor splicing. DNA Cell Biol., 2014; 33 (12): 869–875. doi: 10.1089/dna.2014.2577
28. Rauh G., Schuster H., Fischer J., Keller C., Wolfram G., Zöllner N. Familial defective apolipoprotein B-100: haplotype analysis of the arginine (3500)-glutamine mutation. Atherosclerosis, 1991; 88 (2–3): 219–226. doi: 10.1016/00219150(91)90084-g
29. Sniderman A.D., Thanassoulis G., Glavinovic T., NavarA.M., Pencina M., Catapano A., Ference B.A. Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA Cardiol., 2019; 4 (12): 1287–1295. doi: 10.1001/jamacardio.2019.3780
30. Benn M., Nordestgaard B.G., Jensen J.S., Grande P., Sillesen H., Tybjaerg-Hansen A. Polymorphism in APOB associated with increased low-density lipoprotein levels in both genders in the general population. J. Clin. Endocrinol. Metab., 2005; 90 (10): 5797–5803. doi: 10.1210/jc.2005-0974
31. Soria L.F., Ludwig E.H., Clarke H.R., Vega G.L., Grundy S.M., McCarthy B.J. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl. Acad. Sci. USA, 1989; 86 (2): 587–591. doi: 10.1073/pnas.86.2.587
32. Pullinger C.R., Hennessy L.K., Chatterton J.E., Liu W., Love J.A., Mendel C.M., Frost P.H., Malloy M.J., Schumaker V.N., Kane J.P. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J. Clin. Invest., 1995. Mar; 95 (3): 1225–1234. doi: 10.1172/JCI117772
33. Vega G.L. In vivo evidence for reduced binding of low-density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. J. Clin. Invest., 1986; 78: 1410–1414.
34. Voevoda M.I., Shakhtshneider E.V. Association polymorphisms genes of cardiovascular disease and risk factors in Novosibirsk and ethnic groups of Siberia. In: Monitoring of cardiovascular morbidity, mortality and their risk factors in different regions of the world (WHO MONICA project). Eds. Yu.P. Nikitin. Novosibirsk: Geo, 1980. P.168–178. (In Russ.).
35. Meshkov A.N., Kiseleva A.V., Ershova A.I., Sotnikova E.A., Smetnev S.A., Limonova A.S., Zharikova A.A., Zaychenoka M., Ramensky V.E., Drapkina O.M. ANGPTL3, ANGPTL4, APOA5, APOB, APOC2, APOC3, LDLR, PCSK9, LPL gene variants and coronary artery disease risk. Rus. J. Cardiol., 2022; 27 (10): 5232. (In Russ.). doi: 10.15829/1560-4071-2022-5232
36. Reeskamp L.F., Nurmohamed N.S., Bom M.J., Planken R.N., Driessen R.S., van Diemen P.A., Luirink I.K., Groothoff J.W., Kuipers I.M., Knaapen P., Stroes E.S.G., Wiegman A., Hovingh G.K. Marked plaque regression in homozygous familial hypercholesterolemia. Atherosclerosis, 2021; 327: 13–17. doi: 10.1016/j.atherosclerosis.2021.04.014
37. de Groot E., van Leuven S.I., Duivenvoorden R., Meuwese M.C., Akdim F., Bots M.L., Kastelein J.J. Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med., 2008; 5 (5): 280–288. doi: 10.1038/ncpcardio1163
38. Gallo A., Charriere S., Vimont A., Chapman M.J., Angoulvant D., Boccara F., Cariou B., Carreau V., Carrié A., Bruckert E., Béliard S.; French REgistry of Familial hypERCHOLesterolemia (REFERCHOL) investigators. SAFEHEART risk-equation and cholesterol-year-score are powerful predictors of cardiovascular events in French patients with familial hypercholesterolemia. Atherosclerosis, 2020; 306: 41–49. doi: 10.1016/j.atherosclerosis.2020.06.011
39. Gallo A., Giral P., Carrié A., Carreau V., Béliard S., Bittar R., Maranghi M., Arca M., Cluzel P., Redheuil A., Bruckert E., Rosenbaum D. Early coronary calcifications are related to cholesterol burden in heterozygous familial hypercholesterolemia. J. Clin. Lipidol., 2017; 11 (3): 704–711. doi: 10.1016/j.jacl.2017.03.016
40. Sturm A.C., Knowles J.W., Gidding S.S., Ahmad Z.S., Ahmed C.D., Ballantyne C.M., Baum S.J., Bourbon M., Carrié A., Cuchel M., de Ferranti S.D., Defesche J.C., Freiberger T., Hershberger R.E., Hovingh G.K., Karayan L., Kastelein J.J.P., Kindt I., Lane S.R., Leigh S.E., Linton M.F., Mata P., Neal W.A., Nordestgaard B.G., Santos R.D., Harada-Shiba M., Sijbrands E.J., Stitziel N.O., Yamashita S., Wilemon K.A., Ledbetter D.H., Rader D.J.; Convened by the Familial Hypercholesterolemia Foundation. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol., 2018; 72 (6): 662–680. doi: 10.1016/j.jacc.2018.05.044
Review
For citations:
Pavlova A.V., Mestnikova S.S., Everstova S.S., Asekritova A.S., Tatarinova O.V., Kylbanova E.S., Ivanoshchuk D.E., Zorina V.V., Semaev S.S., Shakhtshneider E.V. Variants in the LDLR and the APOB genes in patients with familial hypercholesterolemia in the Republic of Sakha (Yakutia). Ateroscleroz. 2025;21(4):368-380. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-4-368-380
JATS XML






















