Preview

Ateroscleroz

Advanced search

Genotype-environment interaction in the formation of lipid profile of adolescents

https://doi.org/10.52727/2078-256X-2024-20-4-342-354

Abstract

Many genetic variants associated with metabolic disorders have incomplete penetrance in human. Their phenotypic manifestation depends on the life style factors. In this work, we compared the associations of genotypes at 11 polymorphic sites with body mass index (BMI) and lipid metabolism parameters (levels of total cholesterol (TC), triglycerides, high- and low-density lipoprotein cholesterol (HDL-C and LDL-C)) in three groups of adolescents from Novosibirsk, examined in 1999, 2009 and 2019. In each group, from 187 to 665 persons were genotyped at each site. One-way analysis of variance (independent covariates: gender and age) was used for evaluation. For rs1800497 in the ANKK1 gene, rs53576 in the OXTR gene, rs1360780 in the FKBP5 gene, and rs4680 in the COMT gene, as well as for tandem repeats in the promoter of the MAOA gene, promoter and intron 2 of the SLC6A4 gene (separately and as part of a haplotype), and 3′-untranslated region of the SLC6A3 no associations of genotypes with BMI and lipid metabolism parameters were found in any of the groups. For APOE genotype, an association was obtained with TC levels: p = 0.042 and 0.034, respectively, in the 1999 and 2009 collection groups, as well as with LDL-C: p = 0.001 and 0.002, respectively, in the 2009 and 2019 groups. Moreover, the maximum levels of TC and LDL-C were found among carriers of most common genotype ε3ε3 in 1999 group, and among carriers of atherogenic allele ε4 in other two groups. Thus, it was shown that in adolescents there was an opposite correlation of carriage of the ε4ε4 genotype for the APOE gene with the levels of total cholesterol and LDL cholesterol in the case of normal and reduced calorie intake. For rs6265 in the BDNF gene, the level of statistical significance of the association of the common C allele with TC and LDL-C levels was directly correlated with dietary caloric intake (p = 0.617 and 0.573; p = 0.049 and 0.090; p = 0.010 and 0.024, respectively, in the groups of 1999, 2009 and 2019).

About the Authors

S. V. Mikhailova
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Svetlana V. Mikhailova, candidate of biological sciences, head of the laboratory of human molecular genetics,

10, Academician Lavrentiev ave., Novosibirsk, 630090.



P. S. Orlov
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Pavel S. Orlov, junior researcher at the laboratory of human molecular genetics, 

10, Academician Lavrentiev ave., Novosibirsk, 630090.



D. E. Ivanoshchuk
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Dinara E. Ivanoshchuk, junior researcher at the laboratory of human molecular genetics, 

10, Academician Lavrentiev ave., Novosibirsk, 630090.



E. V. Shakhtshneider
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Elena V. Shakhtshneider, candidate of medical sciences, leader researcher in the laboratory of the molecular genetic investigations of therapeutic disease, head of the laboratory of the study of monogenic forms of human common disease,

175/1, Boris Bogatkov st., Novosibirsk, 630089.



D. V. Denisova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Diana V. Denisova, doctor of medical sciences, chief researcher, laboratory of preventive medicine, 

175/1, Boris Bogatkov st., Novosibirsk, 630089.



References

1. Leite F., Ribeiro L. Dopaminergic pathways in obesity-associated inflammation. J. Neuroimmune Pharmacol., 2020; 15 (1): 93–113. doi: 10.1007/s11481-019-09863-0

2. Yabut J.M., Crane J.D., Green A.E., Keating D.J., Khan W.I., Steinberg G.R. Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocr. Rev., 2019; 40 (4): 1092–1107. doi: 10.1210/er.2018-00283

3. Mikhailova S.V., Ivanoshchuk D.E., Yushkevich E.A., Bairqdar A., Anisimenko M.S., Shcherbakova L.V., Denisova D.V., Orlov P.S. Prevalence of common alleles of some stress resilience genes among adolescents born in different periods relative to the socioeconomic crisis of the 1990s in Russia. Curr. Issues Mol. Biol., 2023; 45: 51–65. doi: 10.3390/cimb45010004

4. Mikhailova S.V., Ivanoshchuk D.E., Orlov P.S., Bairqdar A., Anisimenko M.S., Denisova D.V. Assessment of the genetic characteristics of a generation born during a long-term socioeconomic crisis. Genes, 2023; 14: 2064. doi: 10.3390/genes14112064

5. Стрюкова Е.В., Трошина М.С., Денисова Д.В., Суханов А.В. Динамика показателей липидного профиля крови в проспективной выборке лиц молодого возраста 19–22 лет в г. Новосибирске за пятилетний период (2014–2019 гг.). Атеросклероз, 2020; 16 (3): 39–44. doi: 10.15372/ATER20200305 [Stryukova E.V., Troshina M.S., Denisova D.V., Sukhanov A.V. Dynamics of blood lipid profile indicators in a prospective sample of young people aging 19–22 years in Novosibirsk for the fifth year period (2014–2019). Ateroscleroz, 2020; 16 (3): 39–44. (In Russ.)]. doi: 10.15372/ATER20200305

6. Miranda R.C.K., Genro J.P., Campagnolo P.D.B., Mattevi V.S., Vitolo M.R., Almeida S. Biallelic and triallelic approaches of 5-HTTLPR polymorphism are associated with food intake and nutritional status in childhood. J. Nutr. Biochem., 2017; 43: 47–52. doi: 10.1016/j.jnutbio.2017.01.015

7. Sookoian S., Gemma C., García S.I., Gianotti T.F., Dieuzeide G., Roussos A., Tonietti M., Trifone L., Kanevsky D., González C.D., Pirola C.J. Short allele of serotonin transporter gene promoter is a risk factor for obesity in adolescents. Obesity (Silver Spring), 2007; 15 (2): 271–276. doi: 10.1038/oby.2007.519

8. Fuemmeler B.F., Agurs-Collins T.D., McClernon F.J., Kollins S.H., Kail M.E., Bergen A.W., AshleyKoch A.E. Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity (Silver Spring), 2008; 16 (2): 348–355. doi: 10.1038/oby.2007.65

9. Bonnet G., Gómez-Abellán P., Vera B., SánchezRomera J.F., Hernández-Martínez A.M., Sookoian S., Pirola C.J., Garaulet M. Serotonintransporter promoter polymorphism modulates the ability to control food intake: Effect on total weight loss. Mol. Nutr. Food. Res., 2017; 61 (11). doi: 10.1002/mnfr.201700494

10. Monteleone P., Tortorella A., Castaldo E., Maj M. Association of a functional serotonin transporter gene polymorphism with binge eating disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2006; 141 B(1): 7–9. doi: 10.1002/ajmg.b.30232

11. Manco L., Machado-Rodrigues A.M., Padez C. Association study of common functional genetic polymorphisms in SLC6A4 (5-HTT) and MAOA genes with obesity in portuguese children. Arch. Physiol. Biochem., 2022; 128 (6): 1510–1515. doi: 10.1080/13813455.2020.1779312

12. Brummett B.H., Boyle S.H., Siegler I.C., Zuchner S., Ashley-Koch A., Williams R.B. Lipid levels are associated with a regulatory polymorphism of the monoamine oxidase-A gene promoter (MAOA-uVNTR). Med. Sci. Monit., 2008; 14 (2): CR57–CR61.

13. González-Giraldo Y., Trujillo M.L., Forero D.A. Two dopaminergic genes, DRD4 and SLC6A3, are associated with body mass index in a Colombian sample of young adults. Arch. Physiol. Biochem., 2018; 124 (4): 330–334. doi: 10.1080/13813455.2017.1401643

14. Cardel M.I., Lemas D.J., Lee A.M., Miller D.R., Huo T., Klimentidis Y.C., Fernandez J.R. Taq1a polymorphism (rs1800497) is associated with obesityrelated outcomes and dietary intake in a multi-ethnic sample of children. Pediatr. Obes., 2019; 14 (2): e12470. doi: 10.1111/ijpo.12470

15. Aliasghari F., Nazm S.A., Yasari S., Mahdavi R., Bonyadi M. Associations of the ANKK1 and DRD2 gene polymorphisms with overweight, obesity and hedonic hunger among women from the Northwest of Iran. Eat Weight Disord., 2021; 26(1): 305–312. doi: 10.1007/s40519-020-00851-5

16. Palacios A., Canto P., Tejeda M.E., Stephano S., Lujan H., Garcia-Garcia E., Rojano-Mejia D., Mendez J.P. Complete Sequence of the ANKK1 gene in Mexican-mestizo individuals with obesity, with or without binge eating disorder. Eur. Psychiatry, 2018; 54: 59–64. doi: 10.1016/j.eurpsy.2018.07.010

17. Davis C., Levitan R.D., Yilmaz Z., Kaplan A.S., Carter J.C., Kennedy J.L. Binge eating disorder and the dopamine D2 receptor: Genotypes and sub-phenotypes. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012; 38: 328–335. doi: 10.1016/j.pnpbp.2012.05.002

18. Avsar O., Kuskucu A., Sancak S., Genc E. Are dopaminergic genotypes risk factors for eating behavior and obesity in adults? Neurosci. Lett., 2017; 654: 28–32. doi: 10.1016/j.neulet.2017.06.023

19. Sardahaee F.S., Holmen T.L., Micali N., Kvaløy K. Effects of single genetic variants and polygenic obesity risk scores on disordered eating in adolescents – The HUNT study. Appetite, 2017; 118: 8–16. doi: 10.1016/j.appet.2017.07.003

20. Fichna M., Krzyśko-Pieczka I., Żurawek M., Skowrońska B., Januszkiewicz-Lewandowska D., Fichna P. FKBP5 polymorphism is associated with insulin resistance in children and adolescents with obesity. Obes. Res. Clin. Pract., 2018; 12 (Suppl 2): 62–70. doi: 10.1016/j.orcp.2016.11.007

21. Çatli G., Acar S., Cingöz G., Rasulova K., Yarim A.K., Uzun H., Küme T., Kızıldağ S., Dündar B.N., Abacı A. Oxytocin receptor gene polymorphism and low serum oxytocin level are associated with hyperphagia and obesity in adolescents. Int. J. Obes. (Lond), 2021; 45 (9): 2064–2073. doi: 10.1038/s41366-021-00876-5

22. Martínez-Ezquerro J.D., Rendón-Macías M.E., Zamora-Mendoza G., Serrano-Meneses J., RosalesRodríguez B., Escalante-Bautista D., RodríguezCruz M., Sánchez-González R., Arellano-Pineda Y., López-Alarcón M., Zampedri M.C., Rosas-Vargas H. Association between the brain-derived neurotrophic factor Val66Met polymorphism and overweight/obesity in pediatric population. Arch. Med. Res., 2017; 48 (7): 599–608. doi: 10.1016/j.arcmed.2018.02.005

23. Kalenda A., Landgraf K., Löffler D., Kovacs P., Kiess W., Körner A. The BDNF Val66Met polymorphism is associated with lower BMI, lower postprandial glucose levels and elevated carbohydrate intake in children and adolescents. Pediatr. Obes., 2018; 13 (3): 159–167. doi: 10.1111/ijpo.12238

24. Ceccarini M.R., Tasegian A., Franzago M., Patria F.F., Albi E., Codini M., Conte C., Bertelli M., Dalla Ragione L., Stuppia L., Beccari T. 5-HT2AR and BDNF gene variants in eating disorders susceptibility. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2020; 183 (3): 155–163. doi: 10.1002/ajmg.b.32771

25. Rana S., Sultana A., Bhatti A.A. Association of BDNF rs6265 and MC4R rs17782313 with metabolic syndrome in Pakistanis. J. Biosci., 2019; 44 (4): 95.

26. Gasparin C.C., Leite N., Tureck L.V., Souza R.L.R., Milano-Gai G.E., Silva L.R., Lopes W.A., FurtadoAlle L. Effects of polymorphisms in APOB, APOE, HSD11β1, PLIN4, and ADIPOQ genes on lipid profile and anthropometric variables related to obesity in children and adolescents. Genet .Mol. Biol., 2018; 41 (4): 735–741. doi: 10.1590/1678

27. Hanh N.T., Nhung B.T., Dao D.T., Tuyet L.T., Hop L.T., Binh T.Q., Thuc V.T. Association of apolipoprotein E polymorphism with plasma lipid disorders, independent of obesity-related traits in Vietnamese children. Lipids Health Dis., 2016; 15 (1): 176. doi: 10.1186/s12944-016-0349-6

28. Smart M.C., Dedoussis G., Louizou E., Yannakoulia M., Drenos F., Papoutsakis C., Maniatis N., Humphries S.E., Talmud P.J. APOE, CETP and LPL genes show strong association with lipid levels in Greek children. Nutr Metab. Cardiovasc. Dis., 2010; 20 (1): 26–33. doi: 10.1016/j.numecd.2009.02.005

29. Денисова Д.В., Березовикова И.П., Кунцевич А.К., Щербакова Л.В., Батлук Т.И. Питание и избыточная масса тела у подростков в контексте ранней профилактики атеросклероза. Атеросклероз, 2019; 15 (4): 52–57. doi: 10.15372/ATER20190405 [Denisova D.V., Berezovikova I.P., Kuntsevich A.K., Shcherbakova L.V., Batluk T.I. Nutrition and overweight in adolescents in the context of early prevention of atherosclerosis. Ateroscleroz, 2019; 15 (4): 52–57. (In Russ.)]. doi: 10.15372/ATER20190405

30. Денисова Д.В., Завьялова Л.Г. Многолетние тренды показателей физического развития подростков Новосибирска (популяционные исследования 1989–2009 гг.). Бюл. СО РАМН, 2011; 31 (5): 84– 89. [Denisova D.V., Zavialova L.G. Long-term trends in selected indicators of physical development of adolescent population in Novosibirsk (population-based study 1989–2009). Bull. Sib. Branch Russ. Acad. Med. Sci., 2011; 31: 84–89 (In Russ.)].

31. Greenberg B.D., Tolliver T.J., Huang S.J., Li Q., Bengel D., Murphy D.L. Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am. J. Med. Genet., 1999; 88 (1): 83–87

32. Murphy D.L., Lesch K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci., 2008; 9 (2): 85–96. doi: 10.1038/nrn2284

33. Say Y.H. The association of insertions/deletions (INDELs) and variable number tandem repeats (VNTRs) with obesity and its related traits and complications. J. Physiol. Anthropol., 2017; 36 (1): 25. doi: 10.1186/s40101-017-0142-x

34. Sabol S.Z., Hu S., Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet., 1998; 103 (3): 273–279. doi: 10.1007/s004390050816

35. Faraone S.V., Spencer T.J., Madras B.K., ZhangJames Y., Biederman J. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol. Psychiatry, 2014; 19 (8): 880–889. doi: 10.1038/mp.2013.126

36. Koeneke A., Ponce G., Troya-Balseca J., Palomo T., Hoenicka J. Ankyrin repeat and kinase domain containing 1 gene, and addiction vulnerability. Int. J. Mol. Sci., 2020; 21 (7): 2516. doi: 10.3390/ijms21072516

37. Chen J., Lipska B.K., Halim N., Ma Q.D., Matsumoto M., Melhem S., Kolachana B.S., Hyde T.M., Herman M.M., Apud J., Egan M.F., Kleinman J.E., Weinberger D.R. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet., 2004; 75 (5): 807–821. doi: 10.1086/425589

38. Yeo S., Enoch M.A., Gorodetsky E., Akhtar L., Schuebel K., Roy A., Goldman D. The influence of FKBP5 genotype on expression of FKBP5 and other glucocorticoid-regulated genes, dependent on trauma exposure. Genes Brain Behav., 2017; 16 (2): 223–232. doi: 10.1111/gbb.12342

39. Stechschulte L.A., Hinds T.D. Jr., Khuder S.S., Shou W., Najjar S.M., Sanchez E.R. FKBP51 controls cellular adipogenesis through p38 kinase-mediated phosphorylation of GRα and PPARγ. Mol. Endocrinol., 2014; 28 (8): 1265–1275. doi: 10.1210/me.2014-1022

40. Pierzynowska K., Gaffke L., Żabińska M., Cyske Z., Rintz E., Wiśniewska K., Podlacha M., Węgrzyn G. Roles of the oxytocin receptor (OXTR) in human diseases. Int. J. Mol. Sci., 2023; 24 (4): 3887. doi: 10.3390/ijms24043887

41. Leal G., Bramham C.R., Duarte C.B. BDNF and hippocampal synaptic plasticity. Vitam. Horm., 2017; 104: 153–195. doi: 10.1016/bs.vh.2016.10.004

42. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B., Weinberger D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 2003; 112 (2): 257–269. doi: 10.1016/s0092-8674(03)00035-7

43. Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S., Buchkovich M.L., Yang J., et al. Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015; 518 (7538): 197–206. doi: 10.1038/nature14177

44. Park S., Yang H.J., Kim M.J., Hur H.J., Kim S.H., Kim M.S. Interactions between polygenic risk scores, dietary pattern, and menarche age with the obesity risk in a large hospital-based cohort. Nutrients, 2021; 13 (11): 3772. doi: 10.3390/nu13113772

45. Ricci C., Marzocchi C., Riolo G., Ciuoli C., Benenati N., Bufano A., Tirone A., Voglino C., Vuolo G., Castagna M.G., Cantara S. The impact of CPT1B rs470117, LEPR rs1137101 and BDNF rs6265 polymorphisms on the risk of developing obesity in an Italian population. Obes. Res. Clin. Pract., 2021; 15 (4): 327–333. doi: 10.1016/j.orcp.2021.06.008

46. Akbarian S.A., Salehi-Abargouei A., Pourmasoumi M., Kelishadi R., Nikpour P., Heidari-Beni M. Association of Brain-derived neurotrophic factor gene polymorphisms with body mass index: A systematic review and meta-analysis. Adv. Med. Sci., 2018; 63 (1): 43–56. doi: 10.1016/j.advms.2017.07.002

47. Farooq S., Rana S., Siddiqui A.J., Iqbal A., Musharraf S.G. Association of metabolites with obesity based on two gene variants, MC4R rs17782313 and BDNF rs6265. Biochim. Biophys. Acta Mol. Basis Dis., 2021; 1867 (7): 166144. doi: 10.1016/j.bbadis.2021.166144

48. Khalil Y.A., Rabès J.P., Boileau C., Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis, 2021; 328: 11–22. doi: 10.1016/j.atherosclerosis.2021.05.007

49. Rasmussen K.L., Frikke-Schmidt R. The current state of apolipoprotein E in dyslipidemia. Curr. Opin Lipidol., 2024; 35 (2): 78–84. doi: 10.1097/MOL.0000000000000915

50. Rajendiran E., Lamarche B., She Y., Ramprasath V., Eck P., Brassard D., Gigleux I., Levy E., Tremblay A., Couture P., House J.D., Jones P.J.H., Desmarchelier C. A combination of single nucleotide polymorphisms is associated with the interindividual variability in the blood lipid response to dietary fatty acid consumption in a randomized clinical trial. Am. J. Clin. Nutr., 2021; 114 (2): 564–577. doi: 10.1093/ajcn/nqab064

51. Devlin P., Cao X., Stanfill A.G. Genotype-expression interactions for BDNF across human brain regions. BMC Genomics, 2021; 22 (1): 207. doi: 10.1186/s12864-021-07525-1

52. Pan L., Mo M.Q., Miao L., Zhang Q.H., Yang S., Gao H., Huang F., Pan S.L., Yin R.X. Association of BDNF rs11030104 SNP and serum lipid levels in two Chinese ethnic groups. Int. J. Clin. Exp. Pathol., 2018; 11 (3): 1466–1483.

53. Gong W., Li H., Song C., Yuan F., Ma Y., Chen Z., Wang R., Fang H., Liu A. Effects of gene-environment interaction on obesity among chinese adults born in the early 1960s. Genes (Basel), 2021; 12 (2): 270. doi: 10.3390/genes12020270

54. Spagnuolo M.S., Donizetti A., Iannotta L., Aliperti V., Cupidi C., Bruni A.C., Cigliano L. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. J. Cell. Physiol., 2018; 233 (9): 6925–6943. doi: 10.1002/jcp.26480

55. Wang S.S., Xu X., Lu A.X., Li W.H., Liu J.X., Liu C., Yan C.H. Amelioration of cholesterol sulfate for lead-induced CTX cell apoptosis based on BDNF signaling pathway mediated cholesterol metabolism. Ecotoxicol. Environ Saf., 2022; 248: 114307. doi: 10.1016/j.ecoenv.2022.114307


Review

For citations:


Mikhailova S.V., Orlov P.S., Ivanoshchuk D.E., Shakhtshneider E.V., Denisova D.V. Genotype-environment interaction in the formation of lipid profile of adolescents. Ateroscleroz. 2024;20(4):342-354. (In Russ.) https://doi.org/10.52727/2078-256X-2024-20-4-342-354

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)