Preview

Ateroscleroz

Advanced search

Cardiovascular risk personification: focus on the natriuretic peptide system

https://doi.org/10.52727/2078-256X-2023-19-2-131-139

Abstract

A brief review presents current data on the possibilities of predicting the course of cardiovascular and other diseases, as well as the results of surgical treatment in patients by assessing the concentration of atrial, brain natriuretic peptides, polymorphic gene variants of these peptides and their receptors. Significant prospects for further research in this direction have been identified in order to develop prognostic molecular genetic panels for assessing the risk of developing myocardial infarction, arterial hypertension, heart failure in the framework of primary and secondary prevention.

About the Authors

O. N. Khryachkova
Federal State Budgetary Scientific Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Oksana N. Hryachkova, candidate of biological sciences, junior researcher, laboratory of genomic medicine

6, Sosnovy Blvd, Kemerovo, 650002



A. V. Sinitskaya
Federal State Budgetary Scientific Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Anna V. Sinitskaya, candidate of biological sciences, researcher, laboratory of genomic medicine

6, Sosnovy Blvd, Kemerovo, 650002



A. V. Ponasenko
Federal State Budgetary Scientific Institution «Research Institute for Complex Issues of Cardiovascular Diseases»
Russian Federation

Anastasia V. Ponasenko, candidate of medical sciences, head of the laboratory of genomic medicine, department of experimental medicine

6, Sosnovy Blvd, Kemerovo, 650002



References

1. Bansilal S., Castellano J.M., Fuster V. Global burden of CVD: focus on secondary prevention of cardiovascular disease. Int. J. Cardiol., 2015 Dec; 201 Suppl 1: S1–S7. doi: 10.1016/S0167-5273(15)31026-3

2. Voight B.F., Peloso G.M., Orho-Melander M., Frikke-Schmidt R., Barbalic M., Jensen M.K., Hindy G., Hólm H., Ding E.L., Johnson T., Schunkert H., Samani N.J., Clarke R., Hopewell J.C., Thompson J.F., Li M., Thorleifsson G., Newton- Cheh C., Musunuru K., Pirruccello J.P., Saleheen D., Chen L., Stewart A., Schillert A., Thorsteinsdottir U., Thorgeirsson G., Anand S., Engert J.C., Morgan T., Spertus J., Stoll M., Berger K., Martinelli N., Girelli D., McKeown P.P., Patterson C.C., Epstein S.E., Devaney J., Burnett M.S., Mooser V., Ripatti S., Surakka I., Nieminen M.S., Sinisalo J., Lokki M.L., Perola M., Havulinna A., de Faire U., Gigante B., Ingelsson E., Zeller T., Wild P., de Bakker P.I., Klungel O.H., Maitland-van der Zee A.H., Peters B.J., de Boer A., Grobbee D.E., Kamphuisen P.W., Deneer V.H., Elbers C.C., Onland-Moret N.C., Hofker M.H., Wijmenga C., Verschuren W.M., Boer J.M., van der Schouw Y.T., Rasheed A., Frossard P., Demissie S., Willer C., Do R., Ordovas J.M., Abecasis G.R., Boehnke M., Mohlke K.L., Daly M.J., Guiducci C., Burtt N.P., Surti A., Gonzalez E., Purcell S., Gabriel S., Marrugat J., Peden J., Erdmann J., Diemert P., Willenborg C., König I.R., Fischer M., Hengstenberg C., Ziegler A., Buysschaert I., Lambrechts D., van de Werf F., Fox K.A., El Mokhtari N.E., Rubin D., Schrezenmeir J., Schreiber S., Schäfer A., Danesh J., Blankenberg S., Roberts R., McPherson R., Watkins H., Hall A.S., Overvad K., Rimm E., Boerwinkle E., Tybjaerg- Hansen A., Cupples L.A., Reilly M.P., Melander O., Mannucci P.M., Ardissino D., Siscovick D., Elosua R., Stefansson K., O’Donnell C.J., Salomaa V., Rader D.J., Peltonen L., Schwartz S.M., Altshuler D., Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, 2012 Aug 11; 380 (9841): 572–580. doi: 10.1016/S0140-6736(12)60312-2

3. li j., qin r., wang w., huang z., huang d.l., li t., wang f., zeng x.t., sun z.y., liu x.f., huang f., guo t. relationship between snp rs1764391 and susceptibility, risk factors, gene-environment interactions of acute myocardial infarction in guangxi han chinese population. curr. pharm. biotechnol., 2020; 21 (1): 79–88. doi: 10.2174/1389201019666191003150015

4. Oristrell G., Ribera A.. Evolution of the prognosis of acute myocardial infarction. Med. Clin. (Barc.), 2023 Feb 10; 160 (3): 118–120. English, Spanish. doi: 10.1016/j.medcli.2022.07.014

5. Pan-Lizcano R., Mariñas-Pardo L., Núñez L., Rebollal-Leal F., López-Vázquez D., Pereira A., Molina-Nieto A., Calviño R., Vázquez-Rodríguez J.M., Hermida-Prieto M. Rare Variants in Genes of the Cholesterol Pathway Are Present in 60 % of Patients with Acute Myocardial Infarction. Int. J. Mol. Sci., 2022 Dec 17; 23 (24): 16127. doi: 10.3390/ijms232416127

6. Mars N., Koskela J.T., Ripatti P., Kiiskinen T.T.J., Havulinna A.S., Lindbohm J.V. et al. Polygenic and clinical risk scores and their 308 impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med., 2020; 26 (4): 549–557.

7. Boileau A., Lalem T., Vausort M., Zhang L., Devaux Y.; Cardiolinc network (www.cardiolinc.org). A 3-gene panel improves the prediction of left ventricular dysfunction after acute myocardial infarction. Int. J. Cardiol., 2018 Mar 1; 254: 28–35. doi: 10.1016/j.ijcard.2017.10.109

8. Goncharova I.A., Koroleva Yu.A., Sleptsov A.A., Pecherina T.B., Kashtalap V.V., Puzyrev V.P., Nazarenko M.S. Genetic Structure of Susceptibility to Cardiovascular Continuum Comorbidity. Genetics, 2022; 58 (10): 1197–1209 (in Russ.)

9. Jefferson B.K., Topol E.J. Molecular mechanisms of myocardial infarction. Curr. Probl. Cardiol., 2005 Jul; 30 (7): 333–374. doi: 10.1016/j.cpcardiol.2005.02.002

10. Goncharova I.A., Nazarenko M.S., Babushkina N.P., Markov A.V., Pecherina T.B., Kashtalap V.V., Tarasenko N.V., Ponasenko A.V., Barbarash O.L., Puzyrev V.P. Genetic Predisposition to Early Myocardial Infarction. Mol. Biol. (Mosk)., 2020 Mar-Apr; 54 (2): 224–232. doi: 10.31857/S0026898420020044

11. Lozhkina N.G., Tolmacheva A.A., Khasanova M.X., Kozik V.A., Stafeeva E.A., Naydena E.A., Mukaramov I., Barbarich V.B., Parkhomenko O.M., Kuimov A.D., Maksimov V.N., Voevoda M.I. Genetic predictors of five-year outcomes of acute coronary syndrome. Rus. J. Cardiol., 2019; 24 (10): 86–90 (in Russ.)

12. Sejrup J.K., Morelli V.M., Løchen M.L., Njølstad I., Mathiesen E.B., Wilsgaard T., Hansen J.B., Brækkan S.K. Myocardial infarction, prothrombotic genotypes, and venous thrombosis risk: The Tromsø Study. Res. Pract. Thromb. Haemost., 2020 Jan 27; 4 (2): 247–254. doi: 10.1002/rth2.12306

13. Chen Q.F., Wang W., Huang Z., Huang D.L., Li T., Wang F., Li J. Correlation of rs1122608 SNP with acute myocardial infarction susceptibility and clinical characteristics in a Chinese Han population: A casecontrol study. Anatol. J. Cardiol., 2018 Apr; 19 (4): 249–258. doi: 10.14744/AnatolJCardiol.2018.35002

14. Li J., Qin R., Wang W., Huang Z., Huang D.L., Li T., Wang F., Zeng X.T., Sun Z.Y., Liu X.F., Huang F., Guo T. Relationship between SNP rs1764391 and Susceptibility, Risk Factors, Gene-environment Interactions of Acute Myocardial Infarction in Guangxi Han Chinese Population. Curr. Pharm. Biotechnol., 2020; 21 (1): 79–88. doi: 10.2174/1389201019666191003150015

15. Tanaka T., Ozaki K. Inflammation as a risk factor for myocardial infarction. J. Hum. Genet., 2006; 51 (7): 595–604. doi: 10.1007/s10038-006-0411-8

16. Song G.Y., Wu Y.J., Yang Y.J., Li J.J., Zhang H.L., Pei H.J., Zhao Z.Y., Zeng Z.H., Hui R.T. The accelerated post-infarction progression of cardiac remodelling is associated with genetic changes in an untreated streptozotocin-induced diabetic rat model. Eur. J. Heart Fail., 2009 Oct; 11 (10): 911–921. doi: 10.1093/eurjhf/hfp117

17. Chaulin A.M., Duplyakov D.V. Increased natriuretic peptides not associated with heart failure. Rus. J. Cardiol., 2020; 25 (S4): 4140. (In Russ.)

18. Goetze J.P., Bruneau B.G., Ramos H.R., Ogawa T., de Bold M.K., de Bold A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol., 2020 Nov; 17 (11): 698–717. doi: 10.1038/s41569-020-0381-0

19. de Bold A.J., Borenstein H.B., Veress A.T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci., 1981; 28: 89–94.

20. Nishikimi T., Kuwahara K., Nakao K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J. Cardiol., 2011; 57 (2): 131–140. doi:10.1016/j.jjcc.2011.01.002

21. Hall C. Essential biochemistry and physiology of (NTpro) BNP. Eur. J. Heart Fail., 2004; 6 (3): 257–260. doi: 10.1016/j.ejheart.2003.12.015

22. Abassi Z., Karram T., Ellaham S. et al. Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol. Ther., 2004; 102 (3): 223–241. doi: 10.1016/j.pharmthera.2004.04.004

23. Joharimoghadam A., Tajdini M., Bozorgi A. Salivary B-type natriuretic peptide: a new method for heart failure diagnosis and follow-up. Kardiol. Pol., 2017; 75 (1): 71–77. doi: 10.5603/KP.a2016.0097

24. Hall C. NT-ProBNP: the mechanism behind the marker. J. Card. Fail., 2005 Jun; 11 (5 Suppl): S81–S83. doi: 10.1016/j.cardfail.2005.04.019

25. Levin E.R., Gardner D.G., Samson W.K. Natriuretic peptides. N. Engl. J. Med., 1998 Jul 30; 339 (5): 321–328. doi: 10.1056/NEJM199807303390507

26. Okamoto R., Ali Y., Hashizume R., Suzuki N., Ito M. BNP as a Major Player in the Heart-Kidney Connection. Int. J. Mol. Sci., 2019 Jul 22; 20 (14): 3581. doi: 10.3390/ijms20143581

27. Oikonomou E., Zografos T., Papamikroulis G.A., Siasos G., Vogiatzi G., Theofilis P., Briasoulis A., Papaioannou S., Vavuranakis M., Gennimata V., Tousoulis D. Biomarkers in Atrial Fibrillation and Heart Failure. Curr. Med. Chem., 2019; 26 (5): 873–887. doi: 10.2174/0929867324666170830100424

28. Ovchinnikov A.G., Gvozdeva A.D., Blankova Z.N., Borisov A.A., Ageev F.T. The Role of Neprilysin Inhibitors in the Treatment of Heart Failure with Preserved Ejection Fraction. Kardiologiia, 2020 Dec 15; 60 (11): 1352. doi: 10.18087/cardio.2020.11.n1352

29. Heyse A., Manhaeghe L., Mahieu E., Vanfraechem C., van Durme F. Sacubitril/valsartan in heart failure and end-stage renal insufficiency. ESC Heart Fail., 2019 Dec; 6 (6): 1331–1333. doi: 10.1002/ehf2.12544

30. Singh J.S.S., Burrell L.M., Cherif M., Squire I.B., Clark A.L., Lang C.C. Sacubitril/valsartan: beyond natriuretic peptides. Heart, 2017 Oct; 103 (20): 1569–1577. doi: 10.1136/heartjnl-2017-311295

31. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam CSP, Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Francesco Piepoli M., Price S., Rosano G.M.C., Ruschitzka F., Kathrine Skibelund A.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 2021 Sep 21; 42 (36): 3599–3726. doi: 10.1093/eurheartj/ehab368

32. Mahla E., Baumann A., Rehak P., Watzinger N., Vicenzi M.N., Maier R., Tiesenhausen K., Metzler H., Toller W. N-Terminal Pro-brain Natriuretic Peptide Identifies Patients at High Risk for Adverse Cardiac Outcome after Vascular Surgery. Anesthesiology, 2007; 106: 1088–1095.

33. Ma J., Xin Q., Wang X., Gao M., Wang Y., Liu J. Prediction of perioperative cardiac events through preoperative NT-pro-BNP and cTnI after emergent non-cardiac surgery in elderly patients. PLoS One, 2015 Mar 23; 10 (3): e0121306. doi: 10.1371/journal.pone.0121306

34. Halvorsen S., Mehilli J., Cassese S., Hall T.S., Abdelhamid M., Barbato E., de Hert S., de Laval I., Geisler T., Hinterbuchner L., Ibanez B., Lenarczyk R., Mansmann U.R., McGreavy P., Mueller C., Muneretto C., Niessner A., Potpara T.S., Ristić A., Sade L.E., Schirmer H., Schüpke S., Sillesen H., Skulstad H., Torracca L., Tutarel O., van der Meer P., Wojakowski W., Zacharowski K.; ESC Scientific Document Group. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J., 2022 Oct 14; 43 (39): 3826–3924. doi: 10.1093/eurheartj/ehac270

35. Murashko S.S., Pasechnik I.N., Berns S.A. Myocardial injury in noncardiac surgery – diagnostic difficulties. Comp. Iss. Cardiovascular Diseases, 2020; 9 (3): 59–68 (in Russ.)

36. Chiba A., Watanabe-Takano H., Miyazaki T., Mochizuki N. Cardiomyokines from the heart. Cell Mol. Life Sci., 2018 Apr; 75 (8): 1349–1362. doi: 10.1007/s00018-017-2723-6

37. Barbarash O.L., Usoltseva E.N., Shafranskaya K.S., Zykov M.V., Gruzdeva O.V., Polikutina O.M., Kashtalap V.V. N-terminal brain natriuretic propeptide as a marker of multifocal atherosclerosis in patients with ST segment elevation myocardial infarction. Russ. J. Cardiol., 2012; 3 (95): 12–18. (in Russ.)

38. Park Y.H., Park H.J., Kim B.S., Ha E., Jung K.H., Yoon S.H., Yim S.V., Chung J.H. BNP as a marker of the heart failure in the treatment of imatinib mesylate. Cancer. Lett., 2006 Nov 8; 243 (1): 16–22. doi: 10.1016/j.canlet.2005.11.014

39. Lanfear D.E. Genetic variation in the natriuretic peptide system and heart failure. Heart Fail Rev., 2010 May; 15 (3): 219–228. doi: 10.1007/s10741-008-9113-y

40. Abuzaanona A., Lanfear D. Pharmacogenomics of the Natriuretic Peptide System in Heart Failure. Curr. Heart Fail Rep., 2017 Dec; 14 (6): 536–542. doi: 10.1007/s11897-017-0365-5

41. Pitzalis M.V., Sarzani R., Dessi-Fulgheri P., Iacoviello M., Forleo C., Lucarelli K., Pietrucci F., Salvi F., Sorrentino S., Romito R., Guida P., Rappelli A., Rizzon P. Allelic variants of natriuretic peptide receptor genes are associated with family history of hypertension and cardiovascular phenotype. J. Hypertens., 2003; 21: 1491–1496.

42. Rubattu S., Stanzione R., di Angelantonio E., Zanda B., Evangelista A., Tarasi D., Gigante B., Pirisi A., Brunetti E., Volpe M. Atrial natriuretic peptide gene polymorphisms and risk of ischemic stroke in humans. Stroke, 2004; 35: 814–818.

43. Gruchala M., Ciećwierz D., Wasag B., Targoński R., Dubaniewicz W., Nowak A., Sobiczewski W., Ochman K., Romanowski P., Limon J., Rynkiewicz A. Association of the ScaI atrial natriuretic peptide gene polymorphism with nonfatal myocardial infarction and extent of coronary artery disease. Am. Heart J., 2003 Jan; 145 (1): 125–131. doi: 10.1067/mhj.2003.52

44. Niu W. The Relationship between Natriuretic Peptide Precursor a Gene T2238C Polymorphism and Hypertension: A Meta-Analysis. Int. J. Hypertens., 2011; 2011: 653698. doi: 10.4061/2011/653698

45. Fox A.A., Collard C.D., Shernan S.K., Seidman C.E., Seidman J.G., Liu K.Y., Muehlschlegel J.D., Perry T.E., Aranki S.F., Lange C., Herman D.S., Meitinger T., Lichtner P., Body S.C. Natriuretic peptide system gene variants are associated with ventricular dysfunction after coronary artery bypass grafting. Anesthesiology, 2009 Apr; 110 (4): 738–747. doi: 10.1097/aln.0b013e31819c7496

46. Takeishi Y., Toriyama S., Takabatake N., Shibata Y., Konta T., Emi M., Kato T., Kawata S., Kubota I. Linkage disequilibrium analyses of natriuretic peptide precursor B locus reveal risk haplotype conferring high plasma BNP levels. Biochem. Biophys. Res. Commun., 2007 Oct 19; 362 (2): 480–484. doi: 10.1016/j.bbrc.2007.08.028

47. Iemitsu M., Maeda S., Otsuki T., Sugawara J., Kuno S., Ajisaka R., Matsuda M. Arterial stiffness, physical activity, and atrial natriuretic Peptide gene polymorphism in older subjects. Hypertens. Res., 2008 Apr; 31 (4): 767–774. doi: 10.1291/hypres.31.767

48. Carnevale R., Pignatelli P., Frati G., Nocella C., Stanzione R., Pastori D., Marchitti S., Valenti V., Santulli M., Barbato E., Strisciuglio T., Schirone L., Vecchione C., Violi F., Volpe M., Rubattu S., Sciarretta S. C2238 ANP gene variant promotes increased platelet aggregation through the activation of Nox2 and the reduction of cAMP. Sci. Rep., 2017 Jun 19; 7 (1): 3797. doi: 10.1038/s41598-017-03679-9

49. Rubattu S., Sciarretta S., Marchitti S., Bianchi F., Forte M., Volpe M. The T2238C Human Atrial Natriuretic Peptide Molecular Variant and the Risk of Cardiovascular Diseases. Int. J. Mol. Sci., 2018 Feb 11; 19 (2): 540. doi: 10.3390/ijms19020540

50. Larifla L., Maimaitiming S., Velayoudom-Cephise F.L., Ferdinand S., Blanchet-Deverly A., Benabdallah S., Donnet J.P., Atallah A., Roussel R., Foucan L. Association of 2238T>C polymorphism of the atrial natriuretic peptide gene with coronary artery disease in Afro-Caribbeans with type 2 diabetes. Am. J. Hypertens., 2012 May; 25 (5): 524–527. doi: 10.1038/ajh.2011.233

51. Meroufel D.N., Ouhaïbi-Djellouli H., Mediene-Benchekor S., Hermant X., Grenier-Boley B., Lardjam-Hetraf S.A., Boulenouar H., Hamani-Medjaoui I., Saïdi-Mehtar N., Amouyel P., Houti L., Goumidi L., Meirhaeghe A. Examination of the brain natriuretic peptide rs198389 single-nucleotide polymorphism on type 2 diabetes mellitus and related phenotypes in an Algerian population. Gene, 2015 Aug 10; 567 (2): 159–163. doi: 10.1016/j.gene.2015.04.073

52. Jin G., Chen Z., Zhang J., Song J., Shi J., Zhou B. Association of brain natriuretic peptide gene polymorphisms with chronic obstructive pulmonary disease complicated with pulmonary hypertension and its mechanism. Biosci. Rep., 2018 Oct 2; 38 (5): BSR20180905. doi: 10.1042/BSR20180905

53. Poreba R., Poczatek K., Gać P., Poreba M., Gonerska M., Jonkisz A., Derkacz A., Negrusz-Kawecka M., Sobieszczańska M., Pilecki W., Szuba A., Andrzejak R. SNP rs198389 (T-381 C) polymorphism in the B-type natriuretic peptide gene promoter in patients with atherosclerotic renovascular hypertension. Pol. Arch. Med. Wewn., 2009 Apr; 119 (4): 219–224.

54. Berezikova E.N., Mayanskaya S.D., Garaeva L.A., Shilov S.N., Efremov A.V., Teplyakov A.T., Safronov I.D., Pustovetova M.G., Samsonova E.N., Torim Y.Y. Brain natriuretic peptide gene polymorphism in patients with congestive heart failure. Kazan Med. J., 2013; 4 (94): 433–438 (in Russ.)

55. Березикова Е.Н., Маянская С.Д., Гараева Л.А., Шилов С.Н., Ефремов А.В., Тепляков А.Т., Сафронов И.Д., Пустоветова М.Г., Самсонова Е.Н., Торим Ю.Ю. Полиморфизм гена мозгового натрийуретического пептида у больных с хронической сердечной недостаточностью. Казанск. мед. журн., 2013; 94 (4): 433–438. eLIBRARY ID: 20167657 EDN: QZIODD

56. Makeeva O.A., Zykov M.V., Golubenko M.V., Kashtalap V.V., Kuslish E.V., Goncharova I.A., Barbarash O.L., Puzyrev V.P. The role of genetic factors in the prediction of myocardial infarction complications within one year follow up. Kardiologiia, 2013; 53 (10): 16–23 (in Russ.)

57. Gruchala M., Ciećwierz D., Wasag B., Targoński R., Dubaniewicz W., Nowak A., Sobiczewski W., Ochman K., Romanowski P., Limon J., Rynkiewicz A. Association of the ScaI atrial natriuretic peptide gene polymorphism with nonfatal myocardial infarction and extent of coronary artery disease. Am. Heart J., 2003 Jan; 145 (1): 125–131. doi: 10.1067/mhj.2003.52

58. Siebert J., Lewicki Ł., Myśliwska J., Młotkowska M., Rogowski J. ScaI atrial natriuretic peptide gene polymorphisms and their possible association with postoperative atrial fibrillation – a preliminary report. Arch. Med. Sci., 2017 Apr 1; 13 (3): 568–574. doi: 10.5114/aoms.2016.58270

59. Yamada Y., Ichihara S., Nishida T. Molecular genetics of myocardial infarction. Genomic. Med., 2008 Jan; 2 (1-2): 7–22. doi: 10.1007/s11568-008-9025-x


Review

For citations:


Khryachkova O.N., Sinitskaya A.V., Ponasenko A.V. Cardiovascular risk personification: focus on the natriuretic peptide system. Ateroscleroz. 2023;19(2):131-139. (In Russ.) https://doi.org/10.52727/2078-256X-2023-19-2-131-139

Views: 254


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)