Preview

Ateroscleroz

Advanced search

Analysis of association of apolipoprotein genes APOA2, APOA5 and APOH variants with hyperlipidemia

https://doi.org/10.52727/2078-256X-2023-19-1-6-18

Abstract

Hyperlipidemia is one of the most common metabolic disorders in humans, leading to the atheros clerosis. It is known that lipid metabolism disorders can be associated with genetic predisposition. However, even in patients with clinically confirmed familial hypercholesterolemia, its genetic cause remains unknown in 30 % of cases. The search for genetic variants associated with primary hyperlipidemias is a promising direction in the development of diagnostics and personalized medicine. Aim of the study was to assess of the association of polymorphic sites rs3813627, rs3135506 and rs3785617 of the apolipoprotein genes APOA2, APOA5 and APOH, respectively, with lipid metabolism and atherogenic index in the population of Novosibirsk. Material and methods. Genotyping by polymerase chain reaction followed by analysis of restriction fragment length polymorphism at the rs3813627, rs3135506 and rs3785617 of the APOA2, APOA5 and APOH genes, respectively, was carried out in 522 people from 9360 a random population sample of Novosibirsk and in 266 people from the same sample with a total cholesterol content more than 300 mg/dl. A one-way ANOVA of the association of genetic variants with serum lipid levels and atherogenicity index was performed. Results. The allele frequencies of all studied polymorphic sites in the Novosibirsk population differed from those previously identified among Europeans. A significant increase (p = 0.02) in average total cholesterol content in AA – AG – GG genotype series for rs3785617 of the APOH was revealed. The frequency of the CC genotype for the rs3135506 of the APOA5 in the group with total cholesterol contentration exceeding 300 mg/dl was lower compared to the control group (p = 0.038, odds ratio 0.66, 95 % confidence interval 0.46–0.97). For rs3813627, there were no differences in genotype frequencies and in lipid metabolism. Conclusions. The rs3135506 and rs3785617 can modify the hyperlipidemia phenotype among the Caucasoid population of Western Siberia.

About the Authors

S. V. Mikhailova
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Svetlana V. Mikhailova, candidate of biological sciences, head of the laboratory of human molecular genetics

10, Academician Lavrentiev av., Novosibirsk, 630090



D. E. Ivanoshchuk
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Dinara E. Ivanoshchuk, junior researcher at the laboratory of human molecular genetics, Institute of Cytology and Genetics; researcher in the laboratory of the molecular genetic investigations of the therapeutic diseases

10, Academician Lavrentiev av., Novosibirsk, 630090

175/1, Boris Bogatkov str., Novosibirsk, 630089



N. S. Shirokova
Novosibirsk State University
Russian Federation

Nina S. Shirokova, student

1, Pirogov str., Novosibirsk, 630090



P. S. Orlov
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Pavel S. Orlov, junior researcher at the laboratory of human molecular genetics, Institute of Cytology and Genetics; researcher in the laboratory of the molecular genetic investigations of the therapeutic diseases

10, Academician Lavrentiev av., Novosibirsk, 630090

175/1, Boris Bogatkov str., Novosibirsk, 630089



A. Bairqdar
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Аhmad Bairqdar, junior researcher at the division of monogenic forms of human common disease, Institute of Cytology and Genetics; Phd student

10, Academician Lavrentiev av., Novosibirsk, 630090

1, Pirogov str., Novosibirsk, 630090



E. V. Shachtshneider
Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Elena V. Shakhtshneider, candidate of medical sciences, MD, leading researcher, head of the division of monogenic forms of human common Disease, Institute of Cytology and Genetics; leader researcher in the laboratory of the molecular genetic investigations of therapeutic diseases

10, Academician Lavrentiev av., Novosibirsk, 630090

175/1, Boris Bogatkov str., Novosibirsk, 630089



References

1. Neil H.A., Hammond T., Huxley R., Matthews D.R., Humphries S.E. Extent of underdiagnosis of familial hypercholesterolaemia in routine practice: prospective registry study. BMJ, 2000; 321 (7254): 148. doi: 10.1136/bmj.321.7254.148

2. Marks D., Thorogood M., Neil H.A., Humphries S.E. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis, 2003; 168 (1): 1–14. doi: 10.1016/s0021-9150(02)00330-1

3. Mikhailova S., Ivanoshchuk D., Timoshchenko O., Shakhtshneider E. Genes potentially associated with familial hypercholesterolemia. Biomolecules, 2019; 9 (12): 807. doi: 10.3390/biom9120807

4. Shakhtshneider E.V., Ivanoshchuk D.E., Makarenkova K.V., Orlov P.S., Timoshchenko O.V., Bazhan S.S., Nikitin Yu.P., Voevoda M.I. Cascade genetic screening in diagnostics of heterozygous familial hypercholesterolemia: clinical case. Russian Journal of Cardiology. 2017; (6): 178–179. (In Russ.) doi: 10.15829/1560-4071-2017-6-178-179.

5. Watts G.F., Gidding S., Wierzbicki A.S., Toth P.P., Alonso R., Brown W.V., Bruckert E., Defesche J., Lin K.K., Livingston M., Mata P., Parhofer K.G., Raal F.J., Santos R.D., Sijbrands E.J., Simpson W.G., Sullivan D.R., Susekov A.V., Tomlinson B., Wiegman A., Yamashita S., Kastelein J.J. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int. J. Cardiol., 2014; 171 (3): 309–325. doi: 10.1016/j.ijcard.2013.11.025

6. Humphries S.E., Norbury G., Leigh S., Hadfield S.G., Nair D. What is the clinical utility of DNA testing in patients with familial hypercholesterolaemia? Curr. Opin. Lipidol., 2008; 19 (4): 362–368. doi:10.1097/MOL.0b013e32830636e5

7. Alphonse P.A., Jones P.J. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids, 2016; 51 (5): 519–536. doi: 10.1007/s11745-015-4096-7

8. Mittelstraß K., Waldenberger M. DNA methylation in human lipid metabolism and related diseases. Curr. Opin. Lipidol., 2018; 29 (2): 116–124. doi: 10.1097/MOL.0000000000000491

9. Dron J.S., Wang J., Cao H., McIntyre A.D., Iacocca M.A., Menard J.R., Movsesyan I., Malloy M.J., Pullinger C.R., Kane J.P., Hegele R.A. Severe hypertriglyceridemia is primarily polygenic. J. Clin. Lipidol., 2019; 13 (1): 80–88. doi: 10.1016/j.jacl.2018.10.006

10. Carrasquilla G.D., Christiansen M.R., Kilpeläinen T.O. The Genetic Basis of Hypertriglyceridemia. Curr. Atheroscler. Rep., 2021; 23 (8): 39. doi: 10.1007/s11883-021-00939-y

11. Fullerton S.M., Buchanan A.V., Sonpar V.A., Taylor S.L., Smith J.D., Carlson C.S., Salomaa V., Stengård J.H., Boerwinkle E., Clark A.G., Nickerson D.A., Weiss K.M. The effects of scale: variation in the APOA1/C3/A4/A5 gene cluster. Hum. Genet., 2004; 115 (1): 36–56. doi: 10.1007/s00439-004-1106-x

12. Dron J.S., Hegele R.A. Genetics of Lipid and Lipoprotein Disorders and Traits. Curr. Genet. Med. Rep., 2016; 4 (3): 130–141. doi: 10.1007/s40142-016-0097-y

13. Li Q., Fan P., Bai H., Liu R., Huang Y., Wang X., Wu H., Liu Y., Liu B. Distribution and effect of apoL-I genotype on plasma lipid and apolipoprotein levels in Chinese normalipidemic and endogenous hypertriglyceridemic subjects. Clin. Chim. Acta., 2009; 403 (1-2): 152–155. doi: 10.1016/j.cca.2009.02.007

14. Koshechkin V.A., Malyshev P.P., Rozhkova T.A. Practical lipidology with medical genetics methods. Мoscow: GEOTAR-Media, 2015. Р. 112. (In Russ.)

15. Boucher J., Ramsamy T.A., Braschi S., Sahoo D., Neville T.A., Sparks D.L. Apolipoprotein A-II regulates HDL stability and affects hepatic lipase association and activity. J. Lipid. Res., 2004; 45 (5): 849– 858. doi: 10.1194/jlr.M300431-JLR200

16. Melchior J.T., Street S.E., Andraski A.B., Furtado J.D., Sacks F.M., Shute R.L., Greve E.I., Swertfeger D.K., Li H., Shah A.S., Lu L.J., Davidson W.S. Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1. J. Lipid. Res., 2017; 58 (7): 1374–1385. doi: 10.1194/jlr.M075382

17. Boughanem H., Bandera-Merchán B., HernándezAlonso P., Moreno-Morales N., Tinahones F.J., Lozano J., Morcillo S., Macias-Gonzalez M. Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI. Biomedicines, 2020; 8 (3): 44. doi: 10.3390/biomedicines8030044

18. Kameda T., Horiuchi Y., Shimano S., Yano K., Lai S.J., Ichimura N., Tohda S., Kurihara Y., Tozuka M., Ohkawa R. Effect of myeloperoxidase oxidation and N-homocysteinylation of high-density lipoprotein on endothelial repair function. Biol. Chem., 2021; 403 (3): 265–277. doi: 10.1515/hsz-2021-0247

19. Karadag M.K., Akbulut M. Low HDL levels as the most common metabolic syndrome risk factor in heart failure. Int. Heart J., 2009; 50 (5): 571–580. doi: 10.1536/ihj.50.571

20. Gordon T., Castelli W.P., Hjortland M.C., Kannel W.B., Dawber T.R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med., 1977; 62 (5): 707– 714. doi: 10.1016/0002-9343(77)90874-9

21. Guardiola M., Ribalta J. Update on APOA5 Genetics: Toward a Better Understanding of Its Physiological Impact. Curr. Atheroscler. Rep., 2017; 19 (7): 30. doi: 10.1007/s11883-017-0665-y

22. Su X., Kong Y., Peng D.Q. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis., 2018; 17 (1): 174. Published 2018 Jul 27. doi: 10.1186/s12944-018-0833-2

23. Shu X., Nelbach L., Ryan R.O., Forte T.M. Apolipoprotein A-V associates with intrahepatic lipid droplets and influences triglyceride accumulation. Biochim. Biophys. Acta, 2010; 1801 (5): 605–608. doi: 10.1016/j.bbalip.2010.02.004

24. Zheng X.Y., Yu B.L., Xie Y.F., Zhao S.P., Wu C.L. Apolipoprotein A5 regulates intracellular triglyceride metabolism in adipocytes. Mol. Med. Rep., 2017; 16 (5): 6771–6779. doi: 10.3892/mmr.2017.7461

25. Bai W., Kou C., Zhang L., You Y., Yu W., Hua W., Li Y., Yu Y., Zhao T., Wu Y. Functional polymorphisms of the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster are associated with dyslipidemia in a sexspecific pattern. PeerJ, 2019; 6: e6175. doi: 10.7717/peerj.6175

26. Vasiluev P.A., Ivanova O.N., Semenova N.A., Strokova T.V., Taran N.N., Chubykina U.V., Ezhov M.V., Zakharova E.Y., Dadli E.L., Kutsev S.I. A Clinical Case of a Homozygous Deletion in the APOA5 Gene with Severe Hypertriglyceridemia. Genes (Basel), 2022; 13 (6): 1062. doi: 10.3390/genes13061062

27. Park J.M., Park D.H., Song Y., Kim J.O., Choi J.E., Kwon Y.J., Kim S.J., Lee J.W., Hong K.W. Understanding the genetic architecture of the metabolically unhealthy normal weight and metabolically healthy obese phenotypes in a Korean population. Sci. Rep., 2021; 11 (1): 2279. doi: 10.1038/s41598-021-81940-y

28. Ibi D., Boot M., Dollé M.E.T., Jukema J.W., Rosendaal F.R., Christodoulides C., Neville M.J., Koivula R., Rensen P.C.N., Karpe F., Noordam R., Willems van Dijk K. Apolipoprotein A-V is a potential target for treating coronary artery disease: evidence from genetic and metabolomic analyses. J. Lipid. Res., 2022; 63 (5): 100193. doi: 10.1016/j.jlr.2022.100193

29. The Human Gene Mutation Database. The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff. http://www.hgmd.cf.ac.uk/ac/index.php (02.11.2022)

30. Rs3135506. National Library of Medicine. https://www.ncbi.nlm.nih.gov/snp/rs3135506 (06.11.2022)

31. Maász A., Kisfali P., Szolnoki Z., Hadarits F., Melegh B. Apolipoprotein A5 gene C56G variant confers risk for the development of large-vessel associated ischemic stroke. J. Neurol., 2008; 255 (5): 649–654. doi: 10.1007/s00415-008-0768-z

32. D’Erasmo L., di Costanzo A., Cassandra F., Minicocci I., Polito L., Montali A., Ceci F., Arca M. Spectrum of Mutations and Long-Term Clinical Outcomes in Genetic Chylomicronemia Syndromes. Arterioscler. Thromb. Vasc. Biol., 2019; 39 (12): 2531–2541. doi: 10.1161/ATVBAHA.119.313401

33. Gropp K., Weber N., Reuter M., Micklisch S., Kopka I., Hallström T., Skerka C. β2 -glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator. Blood, 2011; 118 (10): 2774–2783. doi: 10.1182/blood-2011-02-339564

34. Castro A., Lázaro I., Selva D.M., Céspedes E., Girona J., NúriaPlana, Guardiola M., Cabré A., Simó R., Masana L. APOH is increased in the plasma and liver of type 2 diabetic patients with metabolic syndrome. Atherosclerosis, 2010; 209 (1): 201–205. doi: 10.1016/j.atherosclerosis.2009.09.072

35. Vujkovic M., Ramdas S., Lorenz K.M., Guo X., Darlay R., Cordell H.J., He J., Gindin Y., Chung C., Myers R.P., Schneider C.V., Park J., Lee K.M., Serper M., Carr R.M., Kaplan D.E., Haas M.E., MacLean M.T., Witschey W.R., Zhu X., Tcheandjieu C., Kember R.L., Kranzler H.R., Verma A., Giri A., Klarin D.M., Sun Y.V., Huang J., Huffman J.E., Creasy K.T., Hand N.J., Liu C.T., Long M.T., Yao J., Budoff M., Tan J., Li X., Lin H.J., Chen Y.I., Taylor K.D., Chang R.K., Krauss R.M., Vilarinho S., Brancale J., Nielsen J.B., Locke A.E., Jones M.B., Verweij N., Baras A., Reddy K.R., Neuschwander-Tetri B.A., Schwimmer J.B., Sanyal A.J., Chalasani N., Ryan K.A., Mitchell B.D., Gill D., Wells A.D., Manduchi E., Saiman Y., Mahmud N., Miller D.R., Reaven P.D., Phillips L.S., Muralidhar S., DuVall S.L., Lee J.S., Assimes T.L., Pyarajan S., Cho K., Edwards T.L., Damrauer S.M., Wilson P.W., Gaziano J.M., O’Donnell C.J., Khera A.V., Grant S.F.A., Brown C.D., Tsao P.S., Saleheen D., Lotta L.A., Bastarache L., Anstee Q.M., Daly A.K., Meigs J.B., Rotter J.I., Lynch J.A., Regeneron Genetics Center; Geisinger-Regeneron DiscovEHR Collaboration, EPoS Consortium, VA Million Veteran Program, Rader D.J., Voight B.F., Chang K.M. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nat. Genet., 2022; 54 (6): 761–771. doi: 10.1038/s41588-022-01078-z

36. Ioannou Y., Zhang J.Y., Passam F.H., Rahgozar S., Qi J.C., Giannakopoulos B., Qi M., Yu P., Yu D.M., Hogg P.J., Krilis S.A. Naturally occurring free thiols within beta 2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood, 2010; 116 (11): 1961–1970. doi: 10.1182/blood-2009-04-215335

37. Zhang Y.G., Song Y., Guo X.L., Miao R.Y., Fu Y.Q., Miao C.F., Fu Y.Q., Miao C.F., Zhang C. Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis. Cell Cycle, 2019; 18 (20): 2674–2684. doi: 10.1080/15384101.2019.1654797

38. Matsuura E., Atzeni F., Sarzi-Puttini P., Turiel M., Lopez L.R., Nurmohamed M.T. Is atherosclerosis an autoimmune disease? BMC Med., 2014; 12: 47. doi: 10.1186/1741-7015-12-47

39. Zhang X., Xie Y., Zhou H., Xu Y., Liu J., Xie H., Yan J. Involvement of TLR4 in oxidized LDL/ β2GPI/anti-β2GPI-induced transformation of macrophages to foam cells. J. Atheroscler. Thromb., 2014; 21 (11): 1140–1151. doi: 10.5551/jat.24372

40. Rs3785617. National Library of Medicine. https://www.ncbi.nlm.nih.gov/snp/rs3785617 (06.11.2022)

41. Pajak A., Szafraniec K., Kubinova R., Malyutina S., Peasey A., Pikhart H., Nikitin Y., Marmot M., Bobak M. Binge drinking and blood pressure: crosssectional results of the HAPIEE study. PLoS One, 2013; 8 (6): e65856. Published 2013 Jun 7. doi: 10.1371/journal.pone.0065856

42. Sambrook J., Russell D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc., 2006; 2006 (1): pdb.prot4455. doi: 10.1101/pdb.prot4455

43. Ference B.A., Ginsberg H.N., Graham I., Ray K.K., Packard C.J., Bruckert E., Hegele R.A., Krauss R.M., Raal F.J., Schunkert H., Watts G.F., Borén J., Fazio S., Horton J.D., Masana L., Nicholls S.J., Nordestgaard B.G., van de Sluis B., Taskinen M.R., Tokgözoglu L., Landmesser U., Laufs U., Wiklund O., Stock J.K., Chapman M.J., Catapano A.L. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2017; 38 (32): 2459–2472. doi: 10.1093/eurheartj/ehx144

44. Voight B.F., Peloso G.M., Orho-Melander M., Frikke-Schmidt R., Barbalic M., Jensen M.K., Hindy G., Hólm H., Ding E.L., Johnson T., Schunkert H., Samani N.J., Clarke R., Hopewell J.C., Thompson J.F., Li M., Thorleifsson G., NewtonCheh C., Musunuru K., Pirruccello J.P., Saleheen D., Chen L., Stewart A., Schillert A., Thorsteinsdottir U., Thorgeirsson G., Anand S., Engert J.C., Morgan T., Spertus J., Stoll M., Berger K., Martinelli N., Girelli D., McKeown P.P., Patterson C.C., Epstein S.E., Devaney J., Burnett M.S., Mooser V., Ripatti S., Surakka I., Nieminen M.S., Sinisalo J., Lokki M.L., Perola M., Havulinna A., de Faire U., Gigante B., Ingelsson E., Zeller T., Wild P., de Bakker P.I., Klungel O.H., Maitland-van der Zee A.H., Peters B.J., de Boer A., Grobbee D.E., Kamphuisen P.W., Deneer V.H., Elbers C.C., Onland-Moret N.C., Hofker M.H., Wijmenga C., Verschuren W.M., Boer J.M., van der Schouw Y.T., Rasheed A., Frossard P., Demissie S., Willer C., Do R., Ordovas J.M., Abecasis G.R., Boehnke M., Mohlke K.L., Daly M.J., Guiducci C., Burtt N.P., Surti A., Gonzalez E., Purcell S., Gabriel S., Marrugat J., Peden J., Erdmann J., Diemert P., Willenborg C., König I.R., Fischer M., Hengstenberg C., Ziegler A., Buysschaert I., Lambrechts D., van de Werf F., Fox K.A., el Mokhtari N.E., Rubin D., Schrezenmeir J., Schreiber S., Schäfer A., Danesh J., Blankenberg S., Roberts R., McPherson R., Watkins H., Hall A.S., Overvad K., Rimm E., Boerwinkle E., TybjaergHansen A., Cupples L.A., Reilly M.P., Melander O., Mannucci P.M., Ardissino D., Siscovick D., Elosua R., Stefansson K., O’Donnell C.J., Salomaa V., Rader D.J., Peltonen L., Schwartz S.M., Altshuler D., Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, 2012; 380 (9841): 572–580. doi: 10.1016/S0140-6736(12)60312-2

45. Baigent C., Keech A., Kearney P.M., Blackwell L., Buck G., Pollicino C., Kirby A., Sourjina T., Peto R., Collins R., Simes R., Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 2005; 366 (9493): 1267–1278. doi:10.1016/S0140-6736(05)67394-1

46. Emerging Risk Factors Collaboration, di Angelantonio E., Gao P., Pennells L., Kaptoge S., Caslake M., Thompson A., Butterworth A.S., Sarwar N., Wormser D., Saleheen D., Ballantyne C.M., Psaty B.M., Sundström J., Ridker P.M., Nagel D., Gillum R.F., Ford I., Ducimetiere P., Kiechl S., Koenig W., Dullaart R.P., Assmann G., D’Agostino R.B. Sr, Dagenais G.R., Cooper J.A., Kromhout D., Onat A., Tipping R.W., Gómez-de-la-Cámara A., Rosengren A., Sutherland S.E., Gallacher J., Fowkes F.G., Casiglia E., Hofman A., Salomaa V., Barrett-Connor E., Clarke R., Brunner E., Jukema J.W., Simons L.A., Sandhu M., Wareham N.J., Khaw K.T., Kauhanen J., Salonen J.T., Howard W.J., Nordestgaard B.G., Wood A.M., Thompson S.G., Boekholdt S.M., Sattar N., Packard C., Gudnason V., Danesh J. Lipid-related markers and cardiovascular disease prediction. JAMA, 2012; 307 (23): 2499–2506. doi: 10.1001/jama.2012.6571

47. Silverman M.G., Ference B.A., Im K., Wiviott S.D., Giugliano R.P., Grundy S.M., Braunwald E., Sabatine M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA, 2016; 316 (12): 1289–1297. doi: 10.1001/jama.2016.13985

48. Melegh B.I., Duga B., Sümegi K., Kisfali P., Maász A., Komlósi K., Komlósi K., Hadzsiev K., Komoly S., Kosztolányi G., Melegh B. Mutations of the apolipoprotein A5 gene with inherited hypertriglyceridaemia: review of the current literature. Curr. Med. Chem., 2012; 19 (36): 6163–6170. doi: 10.2174/092986712804485719

49. Peloso G.M., Demissie S., Collins D., Mirel D.B., Gabriel S.B., Cupples L.A., Robins S.J., Schaefer E.J., Brousseau M.E. Common genetic variation in multiple metabolic pathways influences susceptibility to low HDL-cholesterol and coronary heart disease. J. Lipid. Res., 2010; 51 (12): 3524–3532. doi: 10.1194/jlr.P008268

50. Teslovich T.M., Musunuru K., Smith A.V., Edmondson A.C., Stylianou I.M., Koseki M., Pirruccello J.P., Ripatti S., Chasman D.I., Willer C.J., Johansen C.T., Fouchier S.W., Isaacs A., Peloso G.M., Barbalic M., Ricketts S.L., Bis J.C., Aulchenko Y.S., Thorleifsson G., Feitosa M.F., Chambers J., Orho-Melander M., Melander O., Johnson T., Li X., Guo X., Li M., Shin Cho Y., Jin Go M., Jin Kim Y., Lee J.Y., Park T., Kim K., Sim X., Twee-Hee Ong R., Croteau-Chonka D.C., Lange L.A., Smith J.D., Song K., Hua Zhao J., Yuan X., Luan J., Lamina C., Ziegler A., Zhang W., Zee R.Y., Wright A.F., Witteman J.C., Wilson J.F., Willemsen G., Wichmann H.E., Whitfield J.B., Waterworth D.M., Wareham N.J., Waeber G., Vollenweider P., Voight B.F., Vitart V., Uitterlinden A.G., Uda M., Tuomilehto J., Thompson J.R., Tanaka T., Surakka I., Stringham H.M., Spector T.D., Soranzo N., Smit J.H., Sinisalo J., Silander K., Sijbrands E.J., Scuteri A., Scott J., Schlessinger D., Sanna S., Salomaa V., Saharinen J., Sabatti C., Ruokonen A., Rudan I., Rose L.M., Roberts R., Rieder M., Psaty B.M., Pramstaller P.P., Pichler I., Perola M., Penninx B.W., Pedersen N.L., Pattaro C., Parker A.N., Pare G., Oostra B.A., O’Donnell C.J., Nieminen M.S., Nickerson D.A., Montgomery G.W., Meitinger T., McPherson R., McCarthy M.I., McArdle W., Masson D., Martin N.G., Marroni F., Mangino M., Magnusson P.K., Lucas G., Luben R., Loos R.J., Lokki M.L., Lettre G., Langenberg C., Launer L.J., Lakatta E.G., Laaksonen R., Kyvik K.O., Kronenberg F., König I.R., Khaw K.T., Kaprio J., Kaplan L.M., Johansson A., Jarvelin M.R., Janssens A.C., Ingelsson E., Igl W., Kees Hovingh G., Hottenga J.J., Hofman A., Hicks A.A., Hengstenberg C., Heid I.M., Hayward C., Havulinna A.S., Hastie N.D., Harris T.B., Haritunians T., Hall A.S., Gyllensten U., Guiducci C., Groop L.C., Gonzalez E., Gieger C., Freimer N.B., Ferrucci L., Erdmann J., Elliott P., Ejebe K.G., Döring A., Dominiczak A.F., Demissie S., Deloukas P., de Geus E.J., de Faire U., Crawford G., Collins F.S., Chen Y.D., Caulfield M.J., Campbell H., Burtt N.P., Bonnycastle L.L., Boomsma D.I., Boekholdt S.M., Bergman R.N., Barroso I., Bandinelli S., Ballantyne C.M., Assimes T.L., Quertermous T., Altshuler D., Seielstad M., Wong T.Y., Tai E.S., Feranil A.B., Kuzawa C.W., Adair L.S., Taylor H.A. Jr., Borecki I.B., Gabriel S.B., Wilson J.G., Holm H., Thorsteinsdottir U., Gudnason V., Krauss R.M., Mohlke K.L., Ordovas J.M., Munroe P.B., Kooner J.S., Tall A.R., Hegele R.A., Kastelein J.J., Schadt E.E., Rotter J.I., Boerwinkle E., Strachan D.P., Mooser V., Stefansson K., Reilly M.P., Samani N.J., Schunkert H., Cupples L.A., Sandhu M.S., Ridker P.M., Rader D.J., van Duijn C.M., Peltonen L., Abecasis G.R., Boehnke M., Kathiresan S. Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010; 466 (7307): 707–713. doi: 10.1038/nature09270

51. Hubacek J.A., Skodová Z., Adámková V., Lánská V., Poledne R. The influence of APOAV polymorphisms (T-1131>C and S19>W) on plasma triglyceride levels and risk of myocardial infarction. Clin. Genet., 2004; 65 (2): 126–130. doi: 10.1111/j.0009-9163.2004.00199.x

52. Hubacek J.A. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology. Gene, 2016; 592 (1): 193–199. doi: 10.1016/j.gene.2016.07.070

53. Pennacchio L.A., Olivier M., Hubacek J.A., Krauss R.M., Rubin E.M., Cohen J.C. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum. Mol. Genet., 2002; 11 (24): 3031–3038. doi: 10.1093/hmg/11.24.3031

54. Weinberg R.B., Cook V.R., Beckstead J.A., Martin D.D., Gallagher J.W., Shelness G.S., Ryan R.O. Structure and interfacial properties of human apolipoprotein A-V. J. Biol. Chem., 2003; 278 (36): 34438– 34444. doi: 10.1074/jbc.M303784200

55. van Dijk K.W., Rensen P.C., Voshol P.J., Havekes L.M. The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr. Opin. Lipidol., 2004; 15 (3): 239–246. doi: 10.1097/00041433-200406000-00002

56. Nilsson S.K., Lookene A., Beckstead J.A., Gliemann J., Ryan R.O., Olivecrona G. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry, 2007; 46 (12): 3896–3904. doi: 10.1021/bi7000533

57. Williams P.T. Gene-environment interactions due to quantile-specific heritability of triglyceride and VLDL concentrations. Sci. Rep., 2020; 10 (1): 4486. doi: 10.1038/s41598-020-60965-9

58. Leduc M.S., Shimmin L.C., Klos K.L., Hanis C., Boerwinkle E., Hixson J.E. Comprehensive evaluation of apolipoprotein H gene (APOH) variation identifies novel associations with measures of lipid metabolism in GENOA. J. Lipid. Res., 2008; 49 (12): 2648–2656. doi: 10.1194/jlr.M800155-JLR200

59. Reiss A.B., Jacob B., Ahmed S., Carsons S.E., DeLeon J. Understanding Accelerated Atherosclerosis in Systemic Lupus Erythematosus: Toward Better Treatment and Prevention. Inflammation, 2021; 44 (5): 1663–1682. doi: 10.1007/s10753-021-01455-6


Review

For citations:


Mikhailova S.V., Ivanoshchuk D.E., Shirokova N.S., Orlov P.S., Bairqdar A., Shachtshneider E.V. Analysis of association of apolipoprotein genes APOA2, APOA5 and APOH variants with hyperlipidemia. Ateroscleroz. 2023;19(1):6-18. (In Russ.) https://doi.org/10.52727/2078-256X-2023-19-1-6-18

Views: 1135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)