Cardiovascular effects of metformin: focus on adipose tissue metabolism
https://doi.org/10.52727/2078-256X-2022-18-3-236-246
Abstract
This review is devoted to the analysis of data on the study of the possible effect of metformin on the endocrine function of adipose tissue: the synthesis and secretion of adipocyte hormones – adipokines (leptin, adiponectin, resistin) and the gastrointestinal system (ghrelin). metformin is a biguanide class of hypoglycemic drugs used as a first-line therapy for the correction of carbohydrate metabolism. Currently, there has been a significant increase in interest in the pleiotropic cardioprotective and antiatherogenic properties of metformin. The molecular mechanisms of action of metformin on carbohydrate and lipid metabolism in adipose tissue are shown in the example of isolated adipocytes (in vitro) and in a living organism (in vivo). The key enzyme regulation in metformin action is с-AMPactivated protein kinase (AMPK). Activation of this enzyme blocks fatty acid synthesis, activates lipolysis and fatty acid oxidation; inhibits glucose production in the liver, reducing the expression of AMP-stimulated genes of enzymes of gluconeogenesis, increases insulin sensitivity, which ultimately contributes to the reduction of glucose. However, the dose-dependent effects of metformin are not well understood, there is no data on the long-term effects of the drug on the metabolism of adipose tissue, which requires careful attention to the study of this issue. Overall, metformin seems to be a promising drug to combat hyperglycemia, and dyslipidemia in diabetes mellitus type 2 and obesity, and for the prevention of cardiovascular risks associated with these diseases.
About the Authors
O. V. GruzdevaRussian Federation
Olga V. Gruzdeva - doctor of medical sciences, professor, head of the laboratory for homeostasis research.
6, Sosnovy Blvd, Kemerovo, 65000
E. E. Bychkova
Russian Federation
Evgeniya Е. Bychkova - research assistant, laboratory for homeostasis research.
6, Sosnovy Blvd, Kemerovo, 650002
J. A. Dyleva
Russian Federation
Julia A. Dyleva - candidate of medical sciences, senior researcher, laboratory for homeostasis research.
6, Sosnovy Blvd, Kemerovo, 650002
References
1. Dedov I.I., Melnichenko G.A. Endocrinology. National leadership. Moscow: GEOTAR-Media, 2011. P. 1112. ISBN 978-5-9704-6054-2 (In Russ.)
2. Ametov A.S., Kozedubova I.V. The role and place of metformin in the treatment of type 2 diabetes mellitus. Consilium Medicum, 2006; 8 (9): 23–26. (In Russ.)
3. Horakova O., Kroupova P., Bardova K., Buresova J., Janovska P., Kopecky J., Rossmeisl M. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci. Rep., 2019; 9 (1): 6156. doi:10.1038/s41598-019-42531-0
4. LaMoia T.E., Butrico G.M., Kalpage H.A., Goedeke L., Hubbard B.T., Vatner D.F., Gaspar R.C., Zhang X.M., Cline G.W., Nakahara K., Woo S., Shimada A., Hüttemann M., Shulman G.I. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc. Natl. Acad. Sci. USA, 2022; 119 (10): e2122287119. doi: 10.1073/pnas.2122287119
5. van Stee M.F., de Graaf, A.A., Groen A.K. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc. Diabetol., 2018; 17 (1): 94. doi:10.1186/s12933-018-0738-4
6. Prattichizzo F., Giuliani A., Mensà E., Sabbatinelli J., Nigris V.D., Rippo M.R., Sala L.L., Procopio A.D., Olivieri F., Ceriello A. Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing. Res. Rev., 2018; 48: 87–98. doi: 10.1016/j.arr.2018.10.003
7. Bai B., Chen H. Metformin: A novel weapon against inflammation. Front. Pharmacol., 2021; 12: e622262. doi: 10.3389/fphar.2021.622262
8. Liu W., Wang Y., Luo J., Liu M., Luo Z. Pleiotropic Effects of Metformin on the Antitumor Efficiency of Immune Checkpoint Inhibitors. Front. Immunol., 2021; 11: e586760. doi: 10.3389/fimmu.2020.586760
9. Driver C., Bamitale K.D.S., Kazi A., Olla M., Nyane N.A., Owira P.M.O. Cardioprotective Effects of Metformin. J. Cardiovasc. Pharmacol., 2018; 72 (2): 121–127. doi: 10.1097/FJC.0000000000000599
10. Feng X., Chen W., Ni X., Little P.J., Xu S., Tang L., Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front. Immunol., 2021; 12: e682853. doi: 10.3389/fimmu.2021.682853
11. Khan M., Joseph F. Adipose Tissue and Adipokines: The Association with and Application of Adipokines in Obesity. Scientifica (Cairo), 2014; 2014: e328592. doi:10.1155/2014/328592
12. Sinitsky M.Yu., Ponasenko A.V., Gruzdeva O.V. The genetic profile and the secret of adipocytes of visceral and subcutaneous adipose tissue in patients with cardiovascular diseases. Complex Problems of Cardiovascular Diseases, 2017; 6 (3): 155–165. (In Russ.) doi: 10.17802/2306-1278-2017-6-3-155-165
13. Longo M., Zatterale F., Naderi J., Parrillo L., Formisano P., Raciti G.A., Beguinot F., Miele C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci., 2019; 20 (9): 2358. doi: 10.3390/ijms20092358
14. Chait A., den Hartigh L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med., 2020; 7: 22. doi:10.3389/fcvm.2020.00022
15. Gruzdeva O.V., Akbasheva O.E., Dyleva Yu.A., Antonova L.V., Matveeva V.G., Uchasova E.G., Fanaskova E.V., Karetnikova V.N., Ivanov S.V., Barbarash O.L. Adipokine and cytokine profiles of epicardial and subcutaneous adipose tissue in patients with ischemic heart disease. Bulletin of experimental biology and medicine, 2017; 163 (5): 608–611. (In Russ.) doi: 10.1007/s10517-017-3860-5
16. Agius L., Ford B.E., Chachra S.S. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. Int. J. Mol. Sci., 2020; 21 (9): 3240. doi: 10.3390/ijms21093240
17. Steinberg G.R., Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug. Discov., 2019; 18: 527–551. doi: 10.1038/s41573-019-0019-2
18. Novikova D.S., Garabadzhiu A.V., Melino G., Barlev N.A., Tribulovich V.G. AMP-activated protein kinase: Structure, function, and role in pathological processes. Biochemistry (Moscow), 2015; 80: 127–144. doi: 10.1134/S0006297915020017
19. Wang Q., Sun J., Liu M., Zhou Y., Zhang L., Li Y. The New Role of AMP-Activated Protein Kinase in Regulating Fat Metabolism and Energy Expenditure in Adipose Tissue. Biomolecules, 2021; 11 (12): 1757. doi: 10.3390/biom11121757
20. Hardie D.G. Perspectives in Diabetes AMPK: A Target for Drugs and Natural Products With Effects on Both Diabetes and Cancer. Diabetes, 2013; 62 (7): 2164–2172. doi: 10.2337/db13-0368
21. Garcia D., Shaw R.J. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular. Cell., 2017; 66 (6): 789–800. doi: 10.1016/j.molcel.2017.05.032Get
22. Yan Y., Zhou X.E., Xu H.E., Melcher K. Structure and Physiological Regulation of AMPK. Int. J. Mol. Sci., 2018; 19 (11): 3534. doi: 10.3390/ijms19113534
23. Boyle J.G., Logan P.J., Jones G.C., Small M., Sattar N.J., Connell M.C., Cleland S.J., Salt I.P. AMPactivated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study. Diabetologia, 2011; 54: 1799–1809. doi: 10.1007/s00125-011-2126-4
24. Rena G., Hardie D.G., Pearson E.R. The mechanisms of action of metformin. Diabetologia, 2017; 60: 1577–1585. doi: 10.1007/s00125-017-4342-z
25. Tokubuchi I., Tajiri Y., Iwata S., Hara K., Wada N., Hashinaga T., Nakayama H., Mifune H., Yamada K. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One, 2017; 12 (2): e0171293. doi: 10.1371/journal.pone.0171293
26. Grisouard J., Timper K., Radimerski T.M., Frey D.M., Peterli R., Kola B., Korbonits M., Herrmann P., Krähenbühl S., Zulewski H., Keller U., Müller B., Christ-Crain M. Mechanisms of metformin action on glucose transport and metabolism in human adipocytes. Biochem. Pharmacol., 2010; 80 (11): 1736–1745. doi: 10.1016/j.bcp.2010.08.021
27. Ciaraldi T.P., Kong A.P., Chu N.V., Kim D.D., Baxi S., Loviscach M., Plodkowski R., Reitz R., Caulfield M., Mudaliar S., Henry R.R. Regulation of Glucose Transport and Insulin Signaling by Troglitazone or Metformin in Adipose Tissue of Type 2 Diabetic Subjects. Diabetes, 2002; 51 (1): 30–36. doi: 10.2337/diabetes.51.1.30
28. Pedersen O., Nielsen O.H., Bak J., Richelsen B., Beck-Nielsen H., Sørensen N.S. The Effects of Metformin on Adipocyte Insulin Action and Metabolic Control in Obese Subjects with Type 2 Diabetes. Diabetes UK, 1989; 6 (3): 249–256. doi: 10.1111/j.14645491.1989.tb01156.x
29. Habegger K.M., Hoffman N.J., Ridenour C.M., Brozinick J.T., Elmendorf J.S. AMPK Enhances Insulin-Stimulated GLUT4 Regulation via Lowering Membrane Cholesterol. Endocrinology, 2012; 153 (5): 2130–2141. doi: 10.1210/en.2011-2099
30. Gaidhu M.P., Fediuc S., Ceddia R.B. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. J. Biol. Chem., 2006; 281 (36): 25956–25964. doi:10.1074/jbc.m602992200
31. Fischer M., Timper K., Radimerski T., Dembinski K., Frey D.M., Zulewski H., Keller U., Müller B., Christ-Crain M., Grisouard J. Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots. Diabetes Obes. Metab., 2010; 12: 356–359. doi: 10.1111/j.1463-1326.2009.01169.x
32. Karise I., Bargut T.C., del Sol M., Aguila M.B., Mandarim-de-Lacerda C.A. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed. Pharmacother, 2019; 111: 1156–1165. doi: 10.1016/j.biopha.2019.01.021
33. Carpentier A.C., Blondin D.P., Virtanen K.A., Richard D., Haman F., Turcotte É.E. Brown Adipose Tissue Energy Metabolism in Humans. Front. Endocrinol. (Lausanne), 2018; 9: 447. doi: 10.3389/fendo.2018.00447
34. Yuan T., Li J., Zhao W.G., Sun W., Liu S.N., Liu Q., Fu Y., Shen Z.F. Effects of metformin on metabolism of white and brown adipose tissue in obese C57BL/6J mice. Diabetol. Metab. Syndr., 2019; 11: 96. doi: 10.1186/s13098-019-0490-2
35. Izquierdo A.G., Crujeiras A.B., Casanueva F.F., Carreira M.C. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients, 2019; 11 (11): 2704. doi: 10.3390/nu11112704
36. Saad M.I., Kamel M.A., Hanafi M.Y. Modulation of Adipocytokines Production and Serum NEFA Level by Metformin, Glimepiride, and Sitagliptin in HFD/ STZ Diabetic Rats. Biochem. Res. Int., 2015; 2015: 138134. doi: 10.1155/2015/138134
37. Mueller W.M., Stanhope K.L., Gregoire F., Evans J.L., Havel P.J. Effects of Metformin and Vanadium on Leptin Secretion from Cultured Rat Adipocytes. Obesity Research., 2000; 8 (7): 530–539. doi: 10.1038/oby.2000.66
38. Kim Y.W., Kim J.Y., Park Y.H., Park S.Y., Won K.C., Choi K.H., Huh J.Y., Moon K.H. Metformin Restores Leptin Sensitivity in High-Fat–Fed Obese Rats With Leptin Resistance. Diabetes, 2006; 55 (3): 716–724. doi: 10.2337/diabetes.55.03.06.db050917
39. Aubert G., Mansuy V., Voirol M.J., Pellerin L., Pralong F.P. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism, 2011; 60 (3): 327–334. doi: 10.1016/j.metabol.2010.02.007
40. Glueck C.J., Fontaine R.N., Wang P., Subbiah M.T., Weber K., Illig E., Streicher P., Sieve-Smith L., Tracy T.M., Lang J.E., McCullough P. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism, 2001; 50 (7): 856–861. doi: 10.1053/meta.2001.24192
41. Fruehwald-Schultes B., Oltmanns K.M., Toschek B., Sopke S., Kern W., Born J., Fehm H.L., Peters A. Short-term treatment with metformin decreases serum leptin concentration without affecting body weight and body fat content in normal-weight healthy men. Metabolism, 2002; 51 (4): 531–536. doi: 10.1053/meta.2002.31332
42. Adeniji A.A., Essah P.A., Nestler J.E., Cheang K.I. Metabolic Effects of a Commonly Used Combined Hormonal Oral Contraceptive in Women With and Without Polycystic Ovary Syndrome. J. Womens Health (Larchmt), 2016; 25 (6): 638–645. doi: 10.1089/jwh.2015.5418
43. Ida S., Murata K., Kaneko R. Effects of metformin treatment on blood leptin and ghrelin levels in patients with type 2 diabetes mellitus. J. Diabetes, 2017; 9 (5): 526–535. doi: 10.1111/1753-0407.12445
44. Klein J., Westphal S., Kraus D., Meier B., Perwitz N., Ott V., Fasshauer M., Klein H.H. Metformin inhibits leptin secretion via a mitogen-activated protein kinase signalling pathway in brown adipocytes. J. Endocrinol., 2004; 183: 299–307. doi: 10.1677/joe.1.05646
45. Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004; 114 (12): 1752–1761. doi: 10.1172/jci21625
46. Liu W., Zhou X., Li Y., Zhang S., Cai X., Zhang R., Gong S., Han X., Ji L. Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus. Medicine, 2020; 99 (6): e19052. doi: 10.1097/MD.0000000000019052
47. Tarkun I., Dikmen E., Cetinarslan B., Cantürk Z. Impact of treatment with metformin on adipokines in patients with polycystic ovary syndrome. Eur. Cytokine Netw., 2010; 21 (4): 272–277. doi: 10.1684/ecn.2010.0217
48. Sofer E., Boaz M., Matas Z., Mashavi M., Shargorodsky M. Treatment with insulin sensitizer metformin improves arterial properties, metabolic parameters, and liver function in patients with nonalcoholic fatty liver disease: a randomized, placebo-controlled trial. Metabolism, 2011; 60 (9): 1278–1284. doi: 10.1016/j.metabol.2011.01.011
49. Duan X., Zhou M., Zhou G., Zhu Q., Li W. Effect of metformin on adiponectin in PCOS: A metaanalysis and a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol., 2021; 267: 61–67. doi: 10.1016/j.ejogrb.2021.10.022
50. Mather K.J., Funahashi T., Matsuzawa Y., Edelstein S., Bray G.A., Kahn S.E., Crandall J., Marcovina S., Goldstein B., Goldberg R. Adiponectin, Change in Adiponectin, and Progression to Diabetes in the Diabetes Prevention Program. Diabetes, 2008; 57 (4): 980–986. doi: 10.2337/db07-1419
51. Fujita H., Fujishima H., Koshimura J., Hosoba M., Yoshioka N., Shimotomai T., Morii T., Narita T., Kakei M., Ito S. Effects of antidiabetic treatment with metformin and insulin on serum and adipose tissue adiponectin levels in db/db mice. Endocr. J., 2005; 52 (4): 427–433. doi: 10.1507/endocrj.52.427
52. Huypens P., Quartier E., Pipeleers D., van de Casteele M. Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur. J. Pharmacol., 2005; 518 (2-3): 90–95. doi: 10.1016/j.ejphar.2005.06.016
53. Almabrouk T.A.M., Ugusman A.B., Katwan O.J., Salt I.P., Kennedy S. Deletion of AMPKα1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release. Br. J. Pharmacol., 2016; 174 (20): 3398–3410. doi: 10.1111/bph.13633
54. Zulian A., Cancello R., Girola A., Gilardini L., Alberti L., Croci M., Micheletto G., Danelli P., Invitti C. In vitro and in vivo Effects of Metformin on Human Adipose Tissue Adiponectin. Obes. Facts., 2011; 4 (1): 27–33. doi: 10.1159/000324582
55. Metais C., Forcheron F., Abdallah P., Basset A., Carmine P.D., Bricca G., Beylota M. Adiponectin receptors: expression in Zucker diabetic rats and effects of fenofibrate and metformin. Metabolism, 2008; 57 (7): 946–953. doi: 10.1016/j.metabol.2008.02.010
56. Schmid P.M., Resch M., Schach C., Birner C., Riegger G.A., Luchner A., Endemann D.H. Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectininduced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats. Cardiovasc. Diabetol., 2013; 12: 46. doi: 10.1186/1475-2840-12-46
57. Jamaluddin M.S., Weakley S.W., Yao Q., Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol., 2011; 165 (3): 622–632. doi: 10.1111/j.1476-5381.2011.01369.x
58. Fujita H., Fujishima H., Morii T., Koshimura J., Narita T., Kakei M., Ito S. Effect of metformin on adipose tissue resistin expression in db/db mice. Biochem. Biophys. Res. Commun., 2002; 298 (3): 345– 349. doi: 10.1016/s0006-291x(02)02464-6
59. Santo L., Teras L.R., Giles G.G., Weinstein S.J., Albanes D., Wang Y., Pfeiffer R.M., Lan Q., Rothman N., Birmann B.M., Colditz G.A., Pollak M.N., Purdue M.P., Hofmann J.N. Circulating resistin levels and risk of multiple myeloma in three prospective cohorts. Br. J. Cancer., 2017; 117 (8): 1241–1245. doi: 10.1038/bjc.2017.282
60. Gómez-Díaz R.A., Talavera J.O., Pool E.C., OrtizNavarrete F.V., Solórzano-Santos F., MondragónGonzález R., Valladares-Salgado A., Cruz M., Aguilar-Salinas C.A., Wacher N.H. Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metabolism, 2012; 61 (9): 1247–1255. doi: 10.1016/j.metabol.2012.02.003
61. Abdalla I.M.M. Ghrelin – Physiological Functions and Regulation. Eur. Endocrinol., 2015; 11 (2): 90–95. doi: 10.17925/EE.2015.11.02.90
62. Serrenho D., Santos S.D., Carvalho A.L. The Role of Ghrelin in Regulating Synaptic Function and Plasticity of Feeding-Associated Circuits. Front. Cell. Neurosci, 2019; 13: 205. doi: 10.3389/fncel.2019.00205
63. Müller T.D., Nogueiras R., Andermann M.L., Andrews Z.B., Anker S.D., Argente J., Batterham R.L., Benoit S.C., Bowers C.Y., Broglio F., Casanueva F.F., D’Alessio D., Depoortere I., Geliebter A., Ghigo E., Cole P.A., Cowley M., Cummings D.E., Dagher A., Diano S., Dickson S.L., Diéguez C., Granata R., Grill H.J., Grove K., Habegger K.M., Heppner K., Heiman M.L., Holsen L., Holst B., Inui A., Jansson J.O., Kirchner H., Korbonits M., Laferrère B., LeRoux C.W., Lopez M., Morin S., Nakazato M., Nass R., Perez-Tilve D., Pfluger P.T., Schwartz T.W., Seeley R.J., Sleeman M., Sun Y., Sussel L., Tong J., Thorner M.O., van der Lely A.J., van der Ploeg L.H., Zigman J.M., Kojima M., Kangawa K., Smith R.G., Horvath T., Tschöp M.H. Ghrelin. Molecular. Metabolism, 2015; 4 (6): 437–460. doi: 10.1016/j.molmet.2015.03.005
64. Doogue M.P., Begg E.J., Moore M.P., Lunt H., Pemberton C.J., Zhang M. Metformin increases plasma ghrelin in Type 2 diabetes. Br. J. Clin. Pharmacol., 2009; 68 (6): 875–882. doi: 10.1111/j.13652125.2009.03372.x
65. Schöfl C., Horn R., Schill T., Hans W., Schlösser H.W., Müller M.J., Brabant C. Circulating Ghrelin Levels in Patients with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab., 2002; 87 (10): 4607–4610. doi: 10.1210/jc.2002-020505
66. English P.J., Ashcroft A., Patterson M., Dovey T.M., Halford J.C.G., Harrison J., Eccleston D., Bloom S.R., Ghate M.A., Wilding J.P.H. Metformin prolongs the postprandial fall in plasma ghrelin concentrations in type 2 diabetes. Diabetes Metab. Res. Rev., 2006; 23: 299–303. doi: 10.1002/dmrr.681
67. Kusaka I., Nagasaka S., Horie H., Ishibashi S. Metformin, but not pioglitazone, decreases postchallenge plasma ghrelin levels in type 2 diabetic patients: a possible role in weight stability? Diabetes, Obesity and Metabolism, 2008; 10: 1039–1046. doi: 10.1111/j.14631326.2008.00857.x
Review
For citations:
Gruzdeva O.V., Bychkova E.E., Dyleva J.A. Cardiovascular effects of metformin: focus on adipose tissue metabolism. Ateroscleroz. 2022;18(3):236-246. (In Russ.) https://doi.org/10.52727/2078-256X-2022-18-3-236-246