Apoptosis and apoptotic extracellular vesicular particles in atherogenesis
Abstract
The review summarizes current notions on the role of apoptosis and apoptotic cell-derived extracellular vesicles in atherogenesis. The mechanisms of efferocytosis impairment and its significance in atherosclerotic vulnerable plaque formation are discussed. The data on the pro- and anti-inflammatory effects of apoptotic extracellular vesicular particles are presented.
About the Authors
Yu. Sh. ShwartzRussian Federation
630089
Boris Bogatkov str., 175/1
M. I. Chasovskikh
Russian Federation
630089
Boris Bogatkov str., 175/1
S. V. Cheresiz
Russian Federation
630089
Boris Bogatkov str., 175/1
M. V. Kruchinina
Russian Federation
630089
Boris Bogatkov str., 175/1
References
1. Mallat Z., Tedgui A. Current perspective on the role of apoptosis in atherothrombotic disease // Circ. Res. 2001. Vol. 88. P. 998–1003.
2. Freyssinet J. M., Toti F., Hugel B. et al. Apoptosis in vascular disease // Thromb. Haemost. 1999. Vol. 82. P. 727–735.
3. Zhu M., Du J., Chen S. et al. L-Cystathionine inhibits the mitochondria-mediated apoptosis induced by oxidized low density lipoprotein // Int. J. Mol. Sci. 2014. Vol. 15. P. 23059−23073.
4. Tavakoli S., Asmis R. Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis // Antioxid. Redox. Signal. 2012. Vol. 17, N 12. P. 1785–1795.
5. Seimon T. A., Nadolski M. J., Liao X. et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress // Cell. Metab. 2010. Vol. 12, N 5. P. 467−482.
6. Tabas I., Seimon T., Timmins J. et al. Macrophage apoptosis in advanced atherosclerosis // Ann. N. Y. Acad. Sci. 2009. Vol. 1173 (Suppl. 1). P. E40–E45.
7. Liu M.-L., Reilly M. P., Casasanto P. et al. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor–positive mi-crovesicles // Arterioscler. Thromb. Vasc. Biol. 2007. Vol. 27. P. 430−435.
8. Seimon T., Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis // J. Lipid Res. 2009. Vol. 50 (Suppl). S382–S387.
9. Tricot O., Mallat Z., Heymes C. et al. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques // Circulation. 2000. Vol. 101. P. 2450–2453.
10. Mallat Z., Tedgui A. Apoptosis in the vasculature: mechanisms and functional importance // Br. J. Pharmacol. 2000. Vol. 130. P. 947–962.
11. Ding Z., Liu S., yang B. et al. Effect of oxidized lowdensity lipoprotein concentration polarization on human smooth muscle cells’ proliferation, cycle, apoptosis and oxidized low-density lipoprotein uptake // J. R. Soc. Interface. 2012. Vol. 9, N 71. P. 1233−1240.
12. Psaltis P. J., Simari R. D. Vascular wall progenitor cells in health and disease // Circ. Res. 2015. Vol. 116. P. 1392−1412.
13. Van Vré E. A., Ait-Oufella H., Tedgui A., Mallat Z. Apoptotic cell death and efferocytosis in atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2012. Vol. 32. P. 887−893.
14. Liu J., Thewke D. P., Su Y. R. et al. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 174–179.
15. Yamada S., Ding Y., Tanimoto A. et al. Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis // Arterioscler. Thromb. Vasc. Biol. 2011. Vol. 31. P. 1555–1564.
16. Bolick D. T., Skaflen M. D., Johnson L. E. et al. G2A deficiency in mice promotes macrophage activation and atherosclerosis // Circ. Res. 2009. Vol. 104. P. 318–327.
17. Arai S., Shelton J. M., Chen M. et al. A role for the apoptosis inhibitory factor AIM/Spα/Api6 in atherosclerosis development // Cell. Metab. 2005. Vol. 1. P. 201–213.
18. Babaev V. R., Chew J. D., Ding L. et al. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis // Cell. Metab. 2008. Vol. 8. P. 492–501.
19. Gautier E. L., Huby T., Witztum J. L. et al. Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage // Circulation. 2009. Vol. 119. P. 1795–1804.
20. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 2255–2264.
21. Thorp E., Li Y., Bao L. et al. Brief report: increased apoptosis in advanced atherosclerotic lesions of ApoE-/-mice lacking macrophage Bcl-2 // Arterioscler. Thromb. Vasc. Biol. 2009. Vol. 29. P. 169–172.
22. Tabas I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress // Antioxidants & Redox. Signaling. 2009. Vol. 11, N 9. P. 2333–2339.
23. Шварц Я. Ш. Фиброзный процесс при атеросклерозе / Я. Ш. Шварц, Е. А. Чересиз // Атеросклероз. – 2011. – Т. 7, № 2. – С. 57–66.
24. Schrijvers D. M., de Meyer G. R., Herman A. G., Martinet W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability // Cardiovasc. Res. 2007. Vol. 73. P. 470–480.
25. Schrijvers D. M., de Meyer G. R., Kockx M. M. et al. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 1256–1261.
26. Tabas I. Mouse models of apoptosis and efferocytosis // Curr. Drug Targets. 2008. Vol. 8. P. 1288–1296.
27. McPhillips K., Janssen W. J., Ghosh M. et al. TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms // J. Immunol. 2007. Vol. 178. P. 8117–8126.
28. Miller Y. I., Viriyakosol S., Binderet C. J. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells // J. Biol. Chem. 2003. Vol. 278. P. 1561–156.
29. Chang M. K., Bergmark C., Laurila A. et al. Monoclonal antibodies against oxidized low density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 6353–6358.
30. Dennis E. A., Witztum J. L. Monoclonal antibodies against oxidized low density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition // Proc. Natl. Acad. Sci. USA. 1999. Vol. 96. P. 6353–6358.
31. Garbin U., Baggio E., Stranieri C. et al. Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques: a role for oxidized polyunsaturated fatty acids? // Cardiovascular Research. 2013. Vol. 97. P. 125–133.
32. Oksala N., Levula M., Airla N. et al. ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries-Tampere vascular study // Ann. Med. 2009. Vol. 41, N 4. P. 279−290.
33. Pirillo A., Catapano A. L. Soluble lectin-like oxidized low density lipoprotein receptor-1 as a biochemical marker for atherosclerosis-related diseases // Dis. Markers. 2013. Vol. 35, N 5. P. 413–418.
34. Driscoll W. S., Vaiser T., Tang J. et al. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype // Circ. Res. 2013. Vol. 113. P. 52–61.
35. Novak M. L., Thorp E. B. Shedding light on impaired efferocytosis and nonresolving inflammation // Circ. Res. 2013. Vol. 113. P. 9−12.
36. Su Y. R., Dove D. E., Major A. S. et al. Reduced ABCA1-mediated cholesterol efflux and accelerated atherosclerosis in apolipoprotein E-deficient mice lacking macrophage-derived ACAT1 // Circulation. 2005. Vol. 111. P. 2373–2381.
37. Ait-Oufella H., Kinugawa K., Zoll J. et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice // Circulation. 2007. Vol. 115. P. 2168–2177.
38. Tуth B., Garabuczi E., Sarang Z. et al. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells // J. Immunol. 2009. Vol. 182. P. 2084–2092.
39. Boisvert W. A., Rose D. M., Boullier A. et al. Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 563–569.
40. Dransfield I., Zagуrska A., Lew E. D. et al. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells // Cell. Death and Disease. 2015. Vol. 6. e1646. doi:10.1038/cddis.2015.18.
41. Li Y., Gerbod-Giannone M. C., Seitz H. et al. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor // J. Biol. Chem. 2006. Vol. 281, N 10. P. 6707–6717.
42. Ait-Oufella H., Pouresmail V., Simon T. et al. Defective Mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28, N 8. P. 1429–1431.
43. Thorp E., Cui D., Schrijvers D. M. et al. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoE-/- mice // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28, N 8. P. 1421–1428.
44. Kimani S. G., Geng K., Kasikara C. et al. Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity // Front. In Immunol. 2014. Vol. 5. doi: 10.3389/fimmu.2014.00566
45. Bhatia V. K., Yun S., Leung V. et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice // Am. J. Pathol. 2007. Vol. 170. P. 416–426.
46. Shklyar B., Levy-Adam F., Mishnaevski K., Kurant E. Caspase activity is required for engulfment of apoptotic cells // Mol. Cell. Biol. 2013. Vol. 33, N 16. P. 3191–3201.
47. Friggeri A., Banerjee S., Xie N. et al. Extracellular histones inhibit efferocytosis // Mol. Med. 2012. Vol. 18. P. 825–833.
48. Friggeri A., Yang Y., Banerjee S. et al. HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin // Am. J. Physiol. Cell Physiol. 2010. Vol. 299. P. 1267–127.
49. Foks A. C., Ran I. A., Wasserman L. et al. T-cell immunoglobulin and mucin domain 3 acts as a negative regulator of atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33. P. 2558−2565.
50. Ramirez-Ortiz Z. G., Pendergraft III W. F., Prasad A. et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity // Nature Immunology. 2013. Vol. 14. P. 917−926.
51. Ravichandran K. S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums // J. Exp. Med. Vol. 207, N 9. P. 1807−1817.
52. Szondy Z., Garabuczi É., Joуs G. et al. Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications // Front. Immunol. 2014. Vol. 5. doi: 10.3389/fimmu.2014.00354
53. Poon I. K. H., Lucas C. D., Rossi A. G., Ravichandran K. S. Apoptotic cell clearance: basic biology and therapeutic potential // Nature Reviews Immunol. 2014. Vol. 14, N 3. P. 166–180.
54. Tao H., Yancey P. G., Babaev V. R. et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis // J. Lipid Res. Jun 2015. doi: 10.1194/jlr.M056689.
55. A-Gonzalez N., Bensinger S. J., Hong C. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR // Immunity. 2009. Vol. 31. P. 245–258. DOI: 10.1016/j.immuni.2009.06.018.
56. Mukundan L., Odegaard J. I., Morel C. R. et al. PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance // Nat. Med. 2009. Vol. 15. P. 1266−1272. doi:10.1038/nm.2048
57. Itoh T., Fairall L., Amin K. et al. Structural basis for the activation of PPARγ by oxidized fatty acids // Nat. Struct. Mol. Biol. 2008. Vol. 15, N 9. P. 924–931.
58. Shiffman D., Mikita T., Tai J. T. et al. Large scale gene expression analysis of cholesterol-loaded macrophages // J. Biol. Chem. 2000. Vol. 275. P. 37324–37332.
59. Spann N. J., Garmire L. X., McDonald J. G. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses // Cell. 2012. Vol. 151. P. 138–152.
60. Joseph S. B., Castrillo A., Laffitte B. A. et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors // Nat. Med. 2003. Vol. 9. P. 213–219.
61. Castrillo A., Joseph S. B., Marathe C. et al. Liver X receptor dependent repression of matrix metalloproteinase-9 expression in macrophages // J. Biol. Chem. 2003. Vol. 278. P. 10443–10449.
62. Rebe C., Raveneau M., Chevriaux A. et al. Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor-α pathway increases the clearance of apoptotic cells by human macrophages // Circ. Res. 2009. Vol. 105, N 4. P. 393–401.
63. Varin A., Thomas C., Ishibashi M. et al. Liver X Receptor Activation Promotes Polyunsaturated Fatty Acid Synthesis in Macrophages Relevance in the Context of Atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2015. Vol. 35. P. 1357−1365.
64. Rong S., Cao Q., Liu M. et al. Macrophage 12/15 lipoxygenase expression increases plasma and hepatic lipid levels and exacerbates atherosclerosis // J. Lipid Res. 2012. Vol. 53. P. 686–695.
65. Serhan C. N. Pro-resolving lipid mediators are leads for resolution physiology // Nature. 2014. Vol. 510. P. 92−101.
66. Pascual-Garcнa M., Carbу J. M., Leуn T. et al. Liver X receptors inhibit macrophage proliferation through downregulation of cyclins D1 and B1 and cyclin-dependent kinases 2 and 4 // J. Immunol. 2011. Vol. 186, N 8. P. 4656−4667.
67. Reddy S. M., Hsiao K. H. K., Abernethy V. E. et al. Phagocytosis of apoptotic cells by macrophages induces novel signaling events leading to cytokine-independent survival and inhibition of proliferation: activation of Akt and inhibition of extracellular signal-regulated kinases 1 and 2 // J. Immunol. 2002. Vol. 169. P. 702–713.
68. Heo K.-S., Cushman H. J., Akaike M. et al. ERK5 activation in macrophages promotes efferocytosis and inhibits atherosclerosis // Circulation. 2014. Vol. 130. P. 180−191.
69. Шварц Я. Ш. Действие холестерина и агонистов гормональных ядерных рецепторов на продукцию трансформирующего фактора роста-β в макрофагах / Я. Ш. Шварц [и др.] // Бюл. эксперим. биологии и медицины. – 2009. – Т. 148, № 9. – С. 294−297.
70. Weis N., Weigert A., von Knethen A., Brune B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants // Mol. Biol. Cell. 2009. Vol. 20. P. 1280−1288.
71. Ma H. M., Wu Z., Nakanishi H. Phosphatidylserinecontaining liposomes suppress inflammatory bone loss by ameliorating the cytokine imbalance provoked by infiltrated macrophages // Lab. Invest. 2011. Vol. 91. P. 921−931. doi:10.1038/labinvest.2011.54
72. Heo K., Akaike M., Taunton J. et al. Macrophage P90rsk accelerates atherosclerosis by inhibiting efferocytosis // Circulation. 2014. Vol. 130. A15966.
73. Patel V. A., Longacre-Antoni A., Cvetanovic M. et al. The affirmative response of the innate immune system to apoptotic cells // Autoimmunity. 2007. Vol. 40, N 4. P. 274–280.
74. Thorp E. B. Contrasting inflammation resolution during atherosclerosis and post myocardial infarction at the level of monocyte/macrophage phagocytic clearance // Front. In Immunol. 2012. Vol. 3. article 39, doi: 10.3389/fimmu.2012.00039.
75. Rathmell J. C., Thompson C. B. The central effectors of cell death in the immune system // Annu. Rev. Immunol. 1999. Vol. 17. P. 781–828.
76. Savill J., Dransfield I., Gregory C., Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses // Nat. Rev. Immunol. 2002. Vol. 2. P. 965–975.
77. Voll R. E., Herrmann M., Roth E. A. et al. Immunosuppressive effects of apoptotic cells // Nature. 1997. Vol. 390. P. 350–351.
78. Fadok V. A., Bratton D. L., Konowal A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine / paracrine mechanisms involving TGF-beta, PGE2, and PAF // J. Clin. Invest. 1998. Vol. 101. P. 890–898.
79. Birge R. B., Ucker D. S. Innate apoptotic immunity: the calming touch of death // Cell. Death Differ. 2008. Vol. 15. P. 1096–1102.
80. Freire-de-Lima C. G., Nascimento D. O., Soares M. B. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages // Nature. 2000. Vol. 403. P. 199–203.
81. Patel V. A., Longacre A., Hsiao K. et al. Apoptotic cells, at all stages of the death process, trigger characteristic signaling events that are divergent from and dominant over those triggered by necrotic cells. Implications for the delayed clearance model of autoimmunity // JBC. 2006. Vol. 281, N 8. P. 4663–4670.
82. Krysko D. V., D’Herde K., Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences // Apoptosis. 2006. Vol. 11. P. 1709−1726.
83. Brouckaert G., Kalai M., Krysko D. V. et al. Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production // Mol. Biol. Cell. 2004. Vol. 15, N 3. P. 1089−1100.
84. Cocco R. E., Ucker D. S. Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure // Mol. Biol. Cell. 2001. Vol. 12, N 4. P. 919–930.
85. Galluzzi L., Vitale I., Abrams J. M. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 // Cell. Death and Differentiation. 2012. Vol. 19. P. 107–120.
86. Shalini S., Dorstyn L., Dawar S., Kumar S. Old, new and emerging functions of caspases // Cell. Death and Differentiation. 2015. Vol. 22. P. 526–539.
87. Vanden-Berghe T., Linkermann A., Jouan-Lanhouet S. et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways // Nat. Rev. Mol. Cell. Biol. 2014. Vol. 15. P. 135–147.
88. Sanz A. B., Sanchez-Nino M. D., Izquierdo M. C. et al. Macrophages and recently identified forms of cell death // Intern. Reviews Immunol. 2013. Early Online: 1–14, doi: 10.3109/08830185.2013.771183.
89. Fadok V. A., Bratton D. L., Frasch C. S. et al. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes // Cell. Death Differ. 1998. Vol. 5, N 7. P. 551−562.
90. Lee S. H., Meng X. W., Flatten K. S. et al. Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm // Cell. Death Differ. 2013. Vol. 20, N 1. P. 64–76. doi: 10.1038/cdd.2012.93.
91. Arur S., Uche U. E., Rezaul K. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment // Dev. Cell. 2003. Vol. 4. P. 587–598.
92. Weigert A., Johann A. M., von Knethen A. et al. Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate // Blood. 2006. Vol. 108. P. 1635–1642.
93. Weigert A., Tzieply N., von Knethen A. et al. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate // Mol. Biol. Cell. 2007. Vol. 18. P. 3810–3819.
94. Hughes J. E., Srinivasan S., Lynch K. R. et al. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages // Circ. Res. 2008. Vol. 102. P. 950–958.
95. Krysko D. V., Garg A. D., Kaczmarek A. et al. Immunogenic cell death and DAMPs in cancer therapy // Nature Reviews – Cancer. 2012. Vol. 12. P. 860−875.
96. Gao Y., Herndon J. M., Zhang H. et al. Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis // J. Exp. Med. 1998. Vol. 188. P. 887–896.
97. Chen W., Frank M. E., Jin W., Wahl S. M. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu // Immunity. 2001. Vol. 14. P. 715–725.
98. Mantovani A., Biswas S. K., Galdiero M. R. et al. Macrophage plasticity and polarization in tissue repair and remodeling // J. Pathol. 2013. Vol. 229, N 2. P. 176−185.
99. Biswas S. K., Chittezhath M., Shalova I. N., Lim J. Y. Macrophage polarization and plasticity in health and disease // Immunol. Res. 2012. Vol. 53 (1-3). P. 11−24.
100. Schwartz Y. Sh., Svistelnik A. V. Functional Phenotypes of Macrophages and the M1–M2 Polarization Concept. Part I. Proinflammatory Phenotype // Biochemistry (Moscow). 2012. Vol. 77, N 3. P. 246−256.
101. Akers J. C., Gonda D., Kim R. et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies // J. Neurooncol. 2013. Vol. 113. P. 1–11.
102. Buzas E. I., György B., Nagy G. et al. Emerging role of extracellular vesicles in inflammatory diseases // Nat. Rev. Rheumatol. Advance online publication 18 February 2014. doi:10.1038/nrrheum.2014.19.
103. Witwer K. W., Buzás E. I., Bemis L. T. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research // J. Extracell. Vesicles. 2013. Vol. 2. P. 20360. http://dx.doi.org/10.3402/jev.v2i0.20360.
104. Morello M., Minciacchi V. R., de Candia P. et al. Large oncosomes mediate intercellular transfer of functional microRNA // Cell Cycle. 2013. Vol. 12, N 22. P. 3526–3536.
105. Mallat Z., Benamer H., Hugel B. et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes // Circulation. 2000. Vol. 101. P. 841–843.
106. Nomura S., Suzuki M., Katsura K. et al. Plateletderived microparticles may influence the development of atherosclerosis in diabetes mellitus // Atherosclerosis. 1995. Vol. 116. P. 235–243.
107. Nieuwland R., Berckmans R. J., Rotteveel-Eijkman R. C. et al. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant // Circulation. 1997. Vol. 96. P. 3534–354.
108. Hulsmans M., Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease // Cardiovasc. Res. 2013. Vol. 100. P. 7−18.
109. Boulanger C. M., Amabile N., Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease // Hypertension. 2006. Vol. 48. P. 180−186.
110. Mallat Z., Hugel B., Ohan J. et al. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity // Circulation. 1999. Vol. 99. P. 348–353.
111. Leroyer A. S., Isobe H., Leseche G. et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques // J. Am. Coll. Cardiol. 2007. Vol. 49. P. 772−777.
112. Chironi G., Simon A., Hugel B. et al. Circulating leukocytederived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2775−2780.
113. Robbins P. D., Morelli A. E. Regulation of immune responses by extracellular vesicles // Nature Reviews: Immunology. 2014. Vol. 14. P. 195−208. doi:10.1038/nri3622.
114. Xu L., Yang B. F., Ai J. MicroRNA transport: a new way in cell communication // J. Cell. Physiol. 2013. Vol. 228. P. 1713−1719.
115. Raitoharju E., Oksala N., Lehtimäki T. MicroRNAs in the atherosclerotic plaque // Clin. Chem. 2013. Vol. 59. P. 1708−1721.
116. Fernandez-Hernando C., Ramirez C. M., Goedeke L., Suarez Y. MicroRNAs in metabolic disease // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33. P. 178−185.
117. Thum T., Mayr M. Review focus on the role of microRNA in cardiovascular biology and disease // Cardiovasc. Res. 2012. Vol. 93. P. 543–544.
118. Schroen B., Heymans S. Small but smart – microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing // Cardiovasc. Res. 2012. Vol. 93. P. 605−613.
119. Goettsch C., Hutcheson J. D., Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms // Circ. Res. 2013. Vol. 112. P. 1073−1084.
120. Huber J., Vales A., Mitulovic G. et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions // Arterioscler. Thromb. Vasc. Biol. 2002. Vol. 22. P. 101−107.
121. Martin S., Tesse A., Hugel B. et al. Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression // Circulation. 2004. Vol. 109. P. 1653−1659.
122. Tesse A., Martinez M. C., Hugel B. et al. Upregulation of proinflammatory proteins through NF-kappaB pathway by shed membrane microparticles results in vascular hyporeactivity // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 2522−2527.
123. Martэnez M. C., Tesse A., Zobairi F. Andriantsitohaina R. Shed membrane microparticles from circulating and vascular cells in regulating vascular function // Am. J. Physiol. Heart Circ. Physiol. 2005. Vol. 288. P. H1004−H1009.
124. Rautou P.-E., Leroyer A. S., Ramkhelawon B. et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1–dependent monocyte adhesion and transendothelial migration // Circ. Res. 2011. Vol. 108. P. 335−343.
125. Densmore J. C., Signorino P. R., Ou J. et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury // Shock. 2006. Vol. 26. P. 464−471.
126. Perez-Casal M., Downey C., Cutillas-Moreno B. et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects // Haematologica. 2009. Vol. 94. P. 387−394.
127. Scanu A., Molnarfi N., Brandt K. J. et al. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins // J. Leukoc. Biol. 2008. Vol. 83. P. 921–927.
128. Carpintero R., Gruaz L., Brandt K. J. et al. HDL interfere with the binding of T cell microparticles to human monocytes to inhibit pro-inflammatory cytokine production // PLoS One. 2010. Vol. 5. e11869.
129. Mayr M., Grainger D., Mayr U. et al. Proteomics, metabolomics and immunomics on microparticles derived from human atherosclerotic plaques // Circ. Cardiovasc. Genet. 2009. Vol. 2. P. 379−388.
130. Obregon C., Rothen-Rutishauser B., Gitahi S. K. et al. Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens // Am. J. Pathol. 2006. Vol. 169. P. 2127−2136.
131. Loyer X., Vion A.-C., Tedgui A., Boulanger C. M. Microvesicles as cell–cell messengers in cardiovascular diseases // Circ. Res. 2014. Vol. 114. P. 345−353.
132. Angelot F., Seillés E., Biichlé S. et al. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases // Haematologica. 2009. Vol. 94. P. 1502–1512.
133. Cocca B. A., Cline A. M., Radic M. Z. Blebs and apoptotic bodies are B cell autoantigens // J. Immunol. 2002. Vol. 169. P. 159−166.
134. Liu M.-L. Cholesterol-Induced Membrane Microvesicles: Novel Contributors to Atherothrombosis // IAS Commentaries. 2007. http://www.athero.org/com-mentaries/comm654.asp.
135. Liu M.-L., Scalia R., Mehta J. L., Williams K. J. Cholesterol-induced membrane microvesicles as novel carriers of damage–associated molecular patterns. Mechanisms of formation, action, and detoxification // Arterioscler. Thromb. Vasc. Biol. 2012. Vol. 32. P. 2113−2121.
136. Miller Y. I., Choi S.-H., Wiesner P. et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity // Circ. Res. 2011. Vol. 108. P. 235−248.
137. Keyel P. A., Tkacheva O. A., Larregina A. T., Salter R. D. Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation // J. Immunol. 2012. Vol. 189. P. 4621−4629.
138. Boing A. N., Hau C. M., Sturk A., Nieuwland R. Platelet microparticles contain activecaspase 3 // Platelets. 2008. Vol. 19. P. 96−103.
139. Huber L. C., Jungel A., Distler J. H. The role of membrane lipids in the induction of macrophage apoptosis by microparticles // Apoptosis. 2007. Vol. 12. P. 363−374.
140. Abid Hussein M. N., Boing A. N., Sturk A. et al. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment // Thromb. Haemost. 2007. Vol. 98. P. 1096−1107.
141. Sarkar A., Mitra S., Mehta S. et al. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1 // PLoS One. 2009. Vol. 4. e7140.
142. Distler J. H., Huber L. C., Hueber A. J. et al. The release of microparticles by apoptotic cells and their effects on macrophages // Apoptosis. 2005. Vol. 10. P. 731−741.
143. Canault M., Leroyer A. S., Peiretti F. et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1 // Am. J. Pathol. 2007. Vol. 171. P. 1713–1723.
144. Berda-Haddad Y., Robert S., Salers P. et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108. P. 20684−20689.
145. Zakharova L., Svetlova M., Fomina A. F. T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor // J. Cell Physiol. 2007. Vol. 212. P. 174−181.
146. Leroyer A. S., Rautou P. E., Silvestre J. S. et al. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization // J. Am. Coll. Cardiol. 2008. Vol. 52. P. 1302−1311.
147. Hellings W. E., Peeters W., Moll F. L. et al. Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study // Circulation. 2010. Vol. 121. P. 1941−1950.
148. Rautou P.-E., Vion A.-C., Amabile N. et al. Microparticles, Vascular Function, and Atherothrombosis // Circ. Res. 2011. Vol. 109. P. 593−606.
149. Paloian N. J., Giachelli C. M. A current understanding of vascular calcification in CKD // Am. J. Physiol. Renal Physiol. 2014. Vol. 307, N 8. P. F891−F900.
150. Bobryshev Y. V., Killingsworth M. C., Lord R. S. A., Grabs A. J. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture // J. Cell. Mol. Med. 2008. Vol. 12 (5B). P. 2073−2082.
151. Demer L. L., Tintut Y. ATVB in focus: Vascular calcification: basic mechanisms to clinical perspectives inflammatory, metabolic, and genetic mechanisms of vascular calcification // Arterioscler. Thromb. Vasc. Biol. 2014. Vol. 34. P. 715−723.
152. New S. E., Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33. P. 1753−1758.
153. New S. E., Goettsch C., Aikawa M. et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques // Circ. Res. 2013. Vol. 113. P. 72−77.
154. Farb A., Burke A. P., Tang A. L. et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden death // Circulation. 1996. Vol. 93. P. 1354−1363.
155. Aharon A., Tamari T., Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells // Thromb. Haemost. 2008. Vol. 100. P. 878−885.
156. Morel O., Toti F., Hugel B. et al. Procoagulant-microparticles: disrupting the vascular homeostasis equation? // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2594−2604.
157. Ghosh A., Li W., Febbraio M., Espinola R. G. et al. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice // J. Clin. Invest. 2008. Vol. 118. P. 1934−1943.
158. Owens III A. P., Mackman N. Microparticles in Hemostasis and Thrombosis // Circ. Res. 2011. Vol. 108. P. 1284−1297.
159. Зубаиров Д. М. Микровезикулы в крови. Функции и их роль в тромбообразовании / Д. М. Зубаиров, Л. Д. Зубаирова. – М.: ГЭОТАР-Медиа, 2009. – 168 с.
160. Soleti R., Lauret E., Andriantsitohaina R., Carmen Martinez M. Internalization and induction of antioxidant messages by microvesicles contribute to the antiapoptotic effects on human endothelial cells // Free Radic. Biol. Med. 2012. Vol. 53. P. 2159−2170.
161. Dalli J., Serhan C. N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators // Blood. 2012. Vol. 120 (15). P. e60-e72.
162. Gasser O., Schifferli J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis // Blood. 2004. Vol. 104. P. 2543−2548.
163. Zernecke A., Bidzhekov K., Noels H. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection // Sci. Signal. 2009. Vol. 2 (100). ra81.
164. Grudzinska M. K., Kurzejamska E., Bojakowski K. et al. Monocyte chemoattractant protein 1–mediated migration of mesenchymal stem cells is a source of intimal hyperplasia // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33. P. 1271−1279.
165. Hergenreider E., Heydt S., Tréguer K. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs // Nature Cell. Biol. 2012. Vol. 14, N 3. P. 249–256. DOI: 10.1038/ncb2441.
166. Njock M.-S., Cheng H. S., Dang L. T. et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs // Blood. 2015. Vol. 125, N 20. P. 3202−3212.
167. Yu X., Huang C., Song B. et al. CD4(+)CD25(+) regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model // Cell. Immunol. 2013. Vol. 285. P. 62−68.
168. Li X., Li J.-J., Yang J.-Y. et al. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model // PLoS One. 2012. Vol. 7. e44045.
169. Sluijter J. P. G., Verhage V., Deddens J. C. et al. Microvesicles and exosomes for intracardiac communication // Cardiovasc. Res. 2014. Vol. 102. P. 302−311.
Review
For citations:
Shwartz Yu.Sh., Chasovskikh M.I., Cheresiz S.V., Kruchinina M.V. Apoptosis and apoptotic extracellular vesicular particles in atherogenesis. Ateroscleroz. 2015;11(3):79-93. (In Russ.)