The efficacy of simultaneous action of several antisense oligonucleotide derivatives by the example of lipid metabolism in mice
Abstract
Motivation and Aim: Demonstration of the possibility of lipid metabolism regulation by joint action of several antisense oligonucleotide derivatives (ASOs) targeted to mRNAs of closely associated proteins involved in lipid metabolism.
Material and Methods: Female mice of the C57BL/6J strain; 13- and 20-mer oligonucleotide derivatives (ASOs) protected from nucleases by the presence of inter-nucleotide thiophosphate bonds and locked nucleic acid (LNA) fragments at their 5’- and 3’- ends; conventional methods of assaying blood serum ALT, total cholesterol, TG, apolipoprotein apoB and lipoproteins: LDL-C, HDL-C.
Results: Solutions of ASOs in isotonic solution were prepared in combinations: (1) anti-apoB; (2) anti-apoB + anti-PCSK9; (3) anti-apoB + anti-PCSK9 + anti-apoCIII. Four injections to the tail veins of C57BL/6J mice were done. After three injections of combination (3), done at weekly intervals, the LDL-C level decreased by 25 % with reference to the control, and the HDL-C/LDL-C ratio improved by 42 %. After subsequent injection of the ASOs accompanied by change to high-fat diet, mice exposed to combinations (2) and (3) showed lower LDL-C levels, by factors of 1.5 and 3.5 with reference to the control, and their HDL-C/LDL-C ratios were better two- and fivefold, respectively. In cases of combinations (2) and (3), a significant decrease in TG
concentration was recorded, twofold in case of (3). These effects were observed at threefold fat content in the diet. The ALT level decreased significantly with transition from combination (1) to (3), i. e., when the liver experienced heavier load of oligonucleotide matter, which indicates to the absence of hepatotoxicity.
Conclusions: The possibility of efficient regulatory joint action of several ASOs targeted to mRNAs of associated proteins is demonstrated by the example of lipid metabolism.
About the Authors
S. I. OshevskiiRussian Federation
SB RAS
The Federal Research Center Institute of Cytology and Genetics
630090
Akademik Lavrent’ev av., 10
Novosibirsk
Yu. I. Ragino
Russian Federation
630089
Boris Bogatkov str., 175/1
Novosibirsk
E. V. Kashtanova
Russian Federation
630089
Boris Bogatkov str., 175/1
Novosibirsk
Ya. V. Polonskaya
Russian Federation
630089
Boris Bogatkov str., 175/1
Novosibirsk
E. M. Stakhneva
Russian Federation
630089
Boris Bogatkov str., 175/1
Novosibirsk
V. P. Nikolin
Russian Federation
SB RAS
The Federal Research Center Institute of Cytology and Genetics
630090
Akademik Lavrent’ev av., 10
Novosibirsk
N. A. Popova
Russian Federation
SB RAS
The Federal Research Center Institute of Cytology and Genetics
630090
Akademik Lavrent’ev av., 10
Novosibirsk
A. N. Korablev
Russian Federation
630090
Pirogov str., 2
Novosibirsk
N. A. Kolchanov
Russian Federation
SB RAS
The Federal Research Center Institute of Cytology and Genetics
630090
Akademik Lavrent’ev av., 10
Novosibirsk
M. I. Voevoda
Russian Federation
SB RAS
The Federal Research Center Institute of Cytology and Genetics
630090
Akademik Lavrent’ev av., 10
630089
Boris Bogatkov str., 175/1
Novosibirsk State University
630090
Pirogov str., 2
Novosibirsk
References
1. Visser M. E., Witztum J. L., Stroes E. S. et al. Antisense oligonucleotides for the treatment of dyslipidaemia // Eur. Heart. J. 2012. Vol. 33, N 12. P. 1451–1458.
2. Antisense drug technology: principles, strategies, and applications. Second Edition / Ed. S. T. Crooke. CRC Press, 2008.
3. Geary R. S., Baker B. F., Crooke S. T. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (kynamro(®)): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B // Clin. Pharmacokinet. 2015. Vol. 54, N 2. P. 133–146.
4. Panta R., Dahal K., Kunwar S. Efficacy and safety of mipomersen in treatment of dyslipidemia: A meta-analysis of randomized controlled trials // J. Clin. Lipidol. 2015. Vol. 9, N. 2. P. 217–225.
5. Gouni-Berthold I., Berthold H. K. Mipomersen and lomitapide: Two new drugs for the treatment of homozygous familial hypercholesterolemia // Atheroscler. Suppl. 2015. Vol. 18. P. 28–34.
6. Mullick A. E., Fu W., Graham M. J. et al. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice // J. Lipid Res. 2011. Vol. 52, N 5. P. 885–896.
7. Straarup E. M., Fisker N., Hedtjärn M. et al. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates // Nucleic. Acids. Res. 2010. Vol. 38, N 20. P. 7100–7111.
8. Gupta N., Fisker N., Asselin M. C. et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo // PLoS One. 2010. Vol. 5, N 5. e10682.
9. Kawakami A., Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis // J. Atheroscler. Thromb. 2009. Vol. 16, N 1. P. 6–11.
10. Graham M. J., Lee R. G., Bell T. A. et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans // Circ. Res. 2013. Vol. 112, N 11. P. 1479–1490.
11. Holmberg R., Refai E., Höög A. et al. Lowering apolipoprotein CIII delays onset of type 1 diabetes // Proc. Nat. Acad Sci. USA. 2011. Vol. 108, N 26. P. 10685–10689.
12. Van Poelgeest E. P., Swart R. M., Betjes M. G. et al. Acute kidney injury during therapy with an antisense oligonucleotide directed against PCSK9 // Am. J. Kidney Dis. 2013. Vol. 62, N 4. P. 796–800
Review
For citations:
Oshevskii S.I., Ragino Yu.I., Kashtanova E.V., Polonskaya Ya.V., Stakhneva E.M., Nikolin V.P., Popova N.A., Korablev A.N., Kolchanov N.A., Voevoda M.I. The efficacy of simultaneous action of several antisense oligonucleotide derivatives by the example of lipid metabolism in mice. Ateroscleroz. 2015;11(3):72-78. (In Russ.)