Preview

Ateroscleroz

Advanced search

The early events of atherosclerosis development and the level of free circulating mitochondrial dna in blood in the experimental dyslipidemia

Abstract

   The aim of research: the studying of blood lipid spectrum, C-reactive protein concentration, and free circulating mitochondrial DNA changes in the course of aorta atherosclerosis development in early steps of high-cholesterol diet in experiment.

   Material and methods. Dyslipidemia was induced by high-cholesterol diet in rabbits “Chinchilla”. The C-reactive protein level and lipid spectrum was analyzed with Beckman synhron 4 multianalyzer (Beckman coulter, USA). The mitochondrial DNA level was registered by real-time PCR. The ultra structure of aorta surface was studied by scanning electron microscopy.

   Results. It was shown that in the blood of experimental animals is formed the Beckman imbalance of atherogenic and antiatherogenic cholesterol fractions (on 2 days of dyslipidemia) and iselevated the C-reactive protein level (on the 8 days). Concurrently, on the 16 days of study, we registered the leucocyte adhesion on the aorta surface in the areas of connections with arteria, which could be focuses of atherosclerotic plaque development. The level of free circulating mitochondrial DNA showed the tendency to 3-fold elevation in comparing with control. However, this data predetermined the prospects of blood plasma mitochondrial DNA level studying on the more late stages of dyslipidemia.

   Conclusion. In the whole, the detected complex of biochemical disturbances of blood and ultrastructural changes of aorta surface in the course of early steps of high-cholesterol diet maybe prospective model of early events of atherosclerosis for pre-clinical translational research in the development of new technologies for diagnostics, prophylaxis, and treatment of lipid metabolism disturbances and atherosclerosis.

About the Authors

N. P. Sudakov
RAS; Irkutsk Scientific Center of Surgery and Traumatology; Irkutsk State University
Russian Federation

SB RAS

Irkutsk Scientific Center

664033

Lermontov str., 134

664003

Bortsov Revolyutsii str., 1

664003

Karl Marks str., 1

Irkutsk



I. V. Klimenkov
Irkutsk State University; RAS
Russian Federation

664003

Karl Marks str., 1

SB RAS

Limnological Institute

664033

Ulan-Batorskaya str., 3

Irkutsk



T. P. Popkova
Irkutsk State University
Russian Federation

664003

Karl Marks str., 1

Irkutsk



S. B. Nikiforov
Irkutsk Scientific Center of Surgery and Traumatology
Russian Federation

664003

Bortsov Revolyutsii str., 1

Irkutsk



O. A. Goldberg
Irkutsk Scientific Center of Surgery and Traumatology
Russian Federation

664003

Bortsov Revolyutsii str., 1

Irkutsk



S. A. Lepekhova
RAS; Irkutsk Scientific Center of Surgery and Traumatology
Russian Federation

SB RAS

Irkutsk Scientific Center

664033

Lermontov str., 134

664003

Bortsov Revolyutsii str., 1

Irkutsk



K. A. Apartsin
RAS; Irkutsk Scientific Center of Surgery and Traumatology
Russian Federation

SB RAS

Irkutsk Scientific Center

664033

Lermontov str., 134

664003

Bortsov Revolyutsii str., 1

Irkutsk



A. I. Katyshev
Siberian Institute of Plant Physiology and Biochemistry
Russian Federation

664033

Irkutsk



Yu. M. Konstantinov
RAS; Irkutsk State University; Siberian Institute of Plant Physiology and Biochemistry
Russian Federation

SB RAS

Irkutsk Scientific Center

664033

Lermontov str., 134

664003

Karl Marks str., 1

664033

Lermontov str., 132

Irkutsk



References

1. Сазонова М. А. Ассоциация мутации митохондриального генома 652insG с атеросклеротическими поражениями человека / М. А. Сазонова [и др.] // Фундаментальные науки и практика. – 2010. – № 4. – С. 168–171.

2. Vejux A., Kahn E., Ménétrier F. et al. Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation // Histochem. Cell Biol. 2007. Vol. 127. P. 609–624.

3. Gahan P. B. Biology of circulating nucleic acids and possible roles in diagnosis and treatment in diabetes and cancer // Infect. Disord. Drug Targets. 2012. Vol. 12. P. 360–370.

4. Zhang Q., Raoof M., Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury // Nature. 2010. Vol. 464. P. 104–107.

5. Ellinger J., Müller S. C., Wernert N. et al. Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy // BJU Int. 2008. Vol. 102. P. 628–632.

6. Sudakov N. P., Popkova T. P., Novikova M. A. et al. The level of blood plasma mitochondrial DNA upon acute myocardium damage in experiment // Biopolymers and Cell. 2012. Vol. 28, N 4. P. 321–324.

7. Nakahira K., Kyung S. Y., Rogers A. J. et al Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation //PLoS Med. 2013. Vol. 10. e1001577.

8. Liu J., Cai X., Xie L. et al Circulating Cell Free Mitochondrial DNA is a Biomarker in the Development of Coronary Heart Disease in the Patients with Type 2 Diabetes // Clin. Lab. 2015. Vol. 61. P. 661–667.

9. Alvarado-Vásquez N. Circulating cell-free mitochondrial DNA as the probable in ducer of early end o the lial dysfunction in the prediabetic patient // Exp. Gerontol. 2015. Vol. 69. P. 70–78.

10. Нагорнев В. А. Атерогенез и реакция «острой фазы» печени / В. А. Нагорнев [и др.] // Архив патологии. – 1998. – № 6. – С. 62–68.

11. Chiu R. W., Chan L. Y., Lam N. Y. et al. Quantitative analysis of circulating mitochondrial DNA in plasma // Clin. Chem. 2003. Vol. 49. P. 719–726.

12. Han C. J., Liu J. T., Li M. et al. Rosiglitazone inhibits angiotensin II-induced C-reactive protein production in human aortic endothelial cells through regulating AT(1)-ROS-MAPK signal pathway // Inflamm. Res. 2012. Vol. 61. P. 1031–1037.

13. Cудаков Н. П. Динамика объема липидных капель клеток печени при экспериментальной дислипопротеидемии / Н. П. Судаков [и др.] // Изв. ИГУ. Сер. Биология. Экология. – 2014. – Т. 7. – С. 104–109.

14. Herms A., Bosch M., Ariotti N. et al. Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity // Curr. Biol. 2013. Vol. 23. P. 1489–1496.

15. Судаков Н. П. Ультра- и наноструктурные нарушения митохондрий клеток печени при экспериментальной дислипопротеидемии / Н. П. Судаков [и др.] // Бюл. ВСНЦ СО РАМН. – 2010. – № 5. – С. 197–201.

16. Fearon I. M. OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production // Cardiovasc. Res. 2006. Vol. 69. P. 855–864.

17. Bian F., Yang X., Zhou F. et al. CRP promotes atherosclerosis by increasing LDL transcytosis across endothelial cells // Br. J. Pharmacol. 2014. Vol. 171. P. 2671–2684.

18. Yuan Y., Verna L. K., Wang N. P. et al. Cholesterol enrichment upregulates intercellular adhesion molecule-1 in human vascular endothelial cells // Biochim. Biophys. Acta. 2001. Vol. 1534. P. 139–148.

19. Liu S. J., Liu W. H., Zhong Y., Liu S. M. Glycogensynthasekinase-3β is involved in C-reactive protein-induced endothelial cell activation // Biochem. (Mosc). 2013. N 8. P. 915–919.

20. Ding Z., Liu S., Wang X., Khaidakov M., Dai Y., Mehta J. L. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis // Sci. Rep. 2013. Vol. 3. P. 1077.


Review

For citations:


Sudakov N.P., Klimenkov I.V., Popkova T.P., Nikiforov S.B., Goldberg O.A., Lepekhova S.A., Apartsin K.A., Katyshev A.I., Konstantinov Yu.M. The early events of atherosclerosis development and the level of free circulating mitochondrial dna in blood in the experimental dyslipidemia. Ateroscleroz. 2015;11(3):15-21. (In Russ.)

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)