Preview

Ateroscleroz

Advanced search

Сell aspects of chronic noninfectious diseases pathogenesis

Abstract

   Caveolae are plasma membrane invaginations of the majority of differentiated cells. They are especially abundant in endothelial cells, adipocytes, muscle cells, and fibroblasts. Caveolae membrane is enriched in cholesterol, sphingolipids, and their principal structural protein component caveolins (1, 2, and 3). In numerous studies caveolae and caveolins important role in a variety of cellular functions including endocytic processes, lipid homeostasis, signal transduction, and tumor suppression was demonstrated. Generation of caveolindeficient mice allowed to analyze functions of caveolae and caveolins with respect to human physiology. In the recent years evidences of caveolins implicating in the pathogenesis of human diseases, including atherosclerosis, diabetes type 2, cancer, muscular dystrophies are accumulated. In a review the role of caveolae and caveolins in health and disease is described.

About the Authors

Yu P. Nikitin
RAMS
Russian Federation

SB RAMS

Research Institute of therapy Internal and preventive medicine

630089

Boris Bogatkov str., 175/1

Novosibirsk



E. N. Vorobyova
Altai State Medical University; Research Institute of therapy
Russian Federation

656049

Lenin str., 40

Barnaul



G. I. Simonova
RAMS
Russian Federation

SB RAMS

Research Institute of therapy Internal and preventive medicine

630089

Boris Bogatkov str., 175/1

656049

Lenin str., 40

Barnaul

Research Institute of therapy

Novosibirsk



R. I. Vorobyov
Research Institute of therapy
Russian Federation

Altai laboratory of epidemiology, prognosis and prevention

656049

Lenin str., 40

Barnaul



A. S. Kazyzaeva
Altai State Medical University
Russian Federation

656049

Lenin str., 40

Barnaul



References

1. Razani B., Woodman S. E., Lisanti M. P. Caveolae: From Cell Biology to Animal Physiology // Pharmacol. Rev. 2002. Vol. 54. P. 431–467.

2. Cohen A. W., Hnasko R., Schubert W., Lisanti M. P. Role of caveolae and caveolins in health and disease // Physiol. Rev. 2004. Vol. 84. P. 1341–1379.

3. Frank P. G., Lee H., Park D. S. et al. Genetic ablationof caveolin-1 confers protection against atheroscle rosis // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. P. 98–105.

4. Palade G. E. Fine structure of blood capillaries // J. Appl. Physiol. 1953. Vol. 24. P. 1424.

5. Yamada E. The fine structure of the gall bladder epithelium of the mouse // J. Biophys. Biochem. Cytol. 1955. Vol. 1, N 5. P. 445–458.

6. Gil J. Number and distribution of plasmalemmal vesicles in the lung // Fed. Proc. 1983. Vol. 42. P. 2414–2418.

7. Cameron P. L., Ruffin J. W., Bollag R. et al. Identification of caveolin and caveolin-related proteins in the brain // J. Neurosc. 1997. Vol. 17. P. 9520–9535.

8. Scherer P. E., Lisanti M. P., Baldini G. et al. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles // J. Cell. Biol. 1994. Vol. 127. P. 1233–1243.

9. Okamoto T., Schlegel A., Scherer P. E., Lisanti M. P. Caveolins, a family of scaffolding proteins for orga nizing «preassembled signaling complexes» at the plasma membrane // J. Biol. Chem. 1998. Vol. 273. P. 5419–5422.

10. Tang Z. L., Scherer P. E., Okamoto T. et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle // J. Biol. Chem. 1996. Vol. 271. P. 2255–2261.

11. Drab M., Verkade P., Elger M. et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice // Science (Wash DC). 2001. Vol. 293. P. 2449–2452.

12. Razani B., Engelman J. A., Wang X. B. et al. Caveolin-1 null mice are viable, but show evidence of hyperproliferative and vascular abnormalities // J. Biol. Chem. 2001. Vol. 276. P. 38121–38138.

13. Razani B., Wang X. B., Engelman J. A. et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae // Mol. Cell. Biol. 2002. Vol. 22. P. 2329–2344.

14. Li S., Galbiati F., Volonte D. et al. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes // FEBS Lett. 1998. Vol. 434. P. 127–134.

15. Liu J., Lee P., Galbiati F., Kitsis R. N., Lisanti M. P. Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation // Am. J. Physiol. Cell. Physiol. 2001. Vol. 280. P. 823–835.

16. Scherer P. E., Okamoto T., Chun M. et al. Identification, sequence and expression of caveolin-2 defines a caveolin gene family // Proc. Natl. Acad. Sci USA. 1996. Vol. 93. P. 131–135.

17. Kurzchalia T., Dupree P., Parton R. G. et al. VIP 21, A 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles // J. Cell. Biol. 1992. Vol. 118. P. 1003–1014.

18. Sargiacomo M., Scherer P. E., Tang Z. L. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization // Proc. Natl. Acad. Sci USA. 1995. Vol. 92. P. 9407–9411.

19. Gratton J-P., Bernatchez P., Sessa W. C. Caveolae and Caveolins in the Cardiovascular System // Circulation Research. 2004. Vol. 94. P. 1408.

20. Lisanti M. P., Scherer P. E., Vidugiriene J. et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: Implications for human disease // J. Cell. Biol. 1994. Vol. 126. P. 111–126.

21. Segal S. S., Brett S. E., Sessa W. C. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters // Am. J. Physiol. 1999. Vol. 277. P. 1167–1177.

22. Mora R., Bonilha V. L., Marmorstein A. et al. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae and rafts when coexpressed with caveolin-1 // J. Biol. Chem. 1999. Vol. 274. P. 25708–25717.

23. Cohen A. W., Combs T. P., Scherer P. E., Lisanti M. P. Role of caveolin and caveolae in insulin signaling and diabetes // Am. J. Physiol. Endocrinol. Metab. 2003. Vol. 285. P. E1151–E1160.

24. Das K., Lewis R. Y., Scherer P. E. et al. The membrane spanning domains of caveolins 1 and 2 mediate the formation of caveolin hetero-oligomers.Implications for the assembly of caveolae membranes in vivo // J. Biol. Chem. 1999. Vol. 274. P. 18721–18728.

25. Drab M., Verkade P., Elger M. et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice // Science (Wash DC). 2001. Vol. 293. P. 2449–2452.

26. Ghitescu L., Fixman A., Simonescu M. et al. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis // J. Cell. Biol. 1986. Vol. 102. P. 1304–1311.

27. Simionescu N., Simionescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides: evidence for the existence of patent transendothelial channels // J. Cell. Biol. 1975. Vol. 64. P. 586–607.

28. Schnitzer J. E. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo // Adv. Drug Deliv. Rev. 2001. Vol. 49. P. 265–280.

29. Schubert W., Frank P. G., Razani B. et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo // J. Biol. Chem. 2001. Vol. 276. P. 48619–48622.

30. Yamamoto M., Toya Y., Schwencke C. et al. Caveolin is an activator of insulin receptor signaling // J. Biol. Chem. 1998. Vol. 273. P. 26962–26968.

31. Bluher M., Michael M. D., Peroni O. D. et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance // Dev. Cell. 2002. Vol. 3. P. 25–38.

32. Frank P. G., Lee H., Park D. S. et al. Genetic ablation of caveolin-1 confers protection against athe rosclerosis // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. P. 98–105.

33. Razani B., Rubin C. S., Lisanti M. P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A // J. Biol. Chem. 1999. Vol. 274. P. 26353–26360.

34. Garcia-Cardena G., Martasek P., Siler-Masters B. S. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin: functional significance of the NOS caveolin binding domain in vivo // J. Biol. Chem. 1997. Vol. 272. P. 25437–25440.

35. Behrendt D., Ganz P. Endothelial function: from vascular biology to clinical applications // Am. J. Cardiol. 2002. Vol. 90. P. 40–48.

36. Gustavsson J., Parpal S., Karlsson M. et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane // FASEB J. 1999. Vol. 13. P. 1961–1971.

37. Corely-Mastick C., Saltiel A. R. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells // J. Biol. Chem. 1997. Vol. 272. P. 20706–20714.

38. Gustavsson J., Parpal S., Karlsson M. et al. Localization of the insulin receptor in caveolae of adipocyte plasma membrane // FASEB J. 1999. Vol. 13. P. 1961–1971.

39. Razani B., Combs T. P., Wang X. B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities // J. Biol. Chem. 2002. Vol. 277. P. 8635–8647.

40. Engelman J. A., Wycoff C. C., Yasuhara S. et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth // J. Biol. Chem. 1997. Vol. 272. P. 16374–16381.

41. Razani B., Schlegel A., Lisanti M. P. Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy // J. Cell. Sci. 2000. Vol. 113. P. 2103–2109.

42. Engelman J. A., Chu C., Lin A. et al. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain // FEBS Lett. 1998. Vol. 428. P. 205–211.

43. Pol A., Luetterforst R., Lindsay M. et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance // J. Cell. Biol. 2001. Vol. 152. P. 1057–1070.

44. Liu P., Ying Y., Zhao Y. et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic // J. Biol. Chem. 2004. Vol. 279. P. 3787–3792.

45. Murata M., Peranen J., Schreiner R. et al. VIP21/caveolin is a cholesterol-binding protein // Proc. Natl. Acad. Sci USA. 1995. Vol. 92. P. 10339–10343.

46. Hailstones D., Sleer L. S., Parton R. G., Stanley K. K. Regulation of caveolin and caveolae by cholesterol in MDCK cells // J. Lipid. Res. 1998. Vol. 39. P. 369–379.

47. Fielding C. J., Bist A., Fielding P. E. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers // Proc. Natl. Acad. Sci USA. 1997. Vol. 94. P. 3753–3758.

48. Feron O., Dessy C., Desager J. P. et al. Hydroxy-methylglutaryl-coenzyme a reductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance // Circulation. 2001. Vol. 103 (Absrtract).

49. Uittenbogaard A., Smart E. J. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation and rapid transport of cholesterol to caveolae // J. Biol. Chem. 2000. Vol. 275. P. 25595–25599.

50. Smart E. J., Ying Y. S., Donzell W. C. et al. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane // J. Biol. Chem. 1996. Vol. 46. P. 29427–29435.

51. Fielding C. J., Fielding P. E. Intracellular cholesterol transport // J. Lipid. Res. 1997. Vol. 38. P. 1503–1521.

52. Fielding C. J., Fielding P. E. Cholesterol and caveolae: structural and functional relationships // Biochim. Biophys. Acta. 2000. Vol. 1529. P. 210–222.

53. Babitt J., Trigatti B., Rigotti A. et al. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae // J. Biol. Chem. 1997. Vol. 272. P. 13242–13249.

54. Graf G. A., Connell P. M., van der Westhuyzen D. R. et al. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into cavoelae // J. Biol. Chem. 1999. Vol. 274. P. 12043–12048.

55. Frank P. G., Marcel Y. L., Connelly M. A. et al. Stabilization of caveolin-1 by cellular cholesterol and scavenger receptor class B type I // Biochemistry. 2002. Vol. 41. P. 11931–11940.

56. Kim M. J., Dawes J., Jessup W. Transendothelial transport of modified low-density lipoproteins // Atherosclerosis. 1994. Vol. 108. P. 5–17.

57. Frank P. G., Woodman S. E., Park D. S., Lisanti M. P. Caveolin, caveolae, and endothelial cell function // Arterioscler. Thromb. Vasc. Biol. 2003. Vol. 23. P. 1161–1168.

58. Cybulsky M. I., Iiyama K., Li H. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis // J. Clin. Invest. 2001. Vol. 107. P. 1255–1262.

59. Cohen A. W., Park D. S., Woodman S. E. et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts // Am. J. Physiol. Cell. Physiol. 2003. Vol. 284. P. C457–C474.

60. Cao G., Yang G., Timme T. L. et al. Disruption of the caveolin-1 gene impairs renal calcium reabsorption and leads to hypercalciuria and urolithiasis // Am. J. Pathol. 2003. Vol. 162. P. 1241–1248.

61. Drab M., Verkade P., Elger M. et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice // Science (Wash DC). 2001. Vol. 293. P. 2449–2452.

62. Galbiati F., Engelman J. A., Volonte D. et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities // J. Biol. Chem. 2001. Vol. 276. P. 21425–21433.

63. Minetti C., Bado M., Broda P. et al. Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency // Am. J. Pathol. 2002. Vol. 160. P. 265–270.

64. Woodman S. E., Park D. S., Cohen A. W. et al. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade // J. Biol. Chem. 2002. Vol. 277. P. 38988–38997.


Review

For citations:


Nikitin Yu.P., Vorobyova E.N., Simonova G.I., Vorobyov R.I., Kazyzaeva A.S. Сell aspects of chronic noninfectious diseases pathogenesis. Ateroscleroz. 2014;10(1):56-66. (In Russ.)

Views: 200


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)