Preview

Атеросклероз

Расширенный поиск

ИЗМЕНЕНИЯ ЛИПИДОМА ПРИ КОЛОРЕКТАЛЬНОМ РАКЕ

https://doi.org/10.15372/ATER20180107

Аннотация

Колоректальный рак занимает второе место по смертности среди всех случаев смертности от злокачественных опухолей в мире. Понимание его патофизиологии имеет важное значение для разработки эффективных стратегий лечения этого заболевания. Липидом, совокупность общих липидов, липид-связанных ферментов, рецепторов и сигнальных путей играют важную роль в многочисленных клеточных процессах, таких как обмен веществ, хранение энергии, пролиферация и апоптоз. Нарушения регуляции метаболизма липидов и их функции вносят вклад в развитие и прогрессирование колоректального рака и могут быть использованы для оценки прогноза. По целому перечню направлений дисрегуляция липидного метаболизма при колоректальном раке оказывается сходной с таковой при развитии сердечно-сосудистой патологии. Стратегии, направленные на липидом, были использованы в клинических исследованиях и показали многообещающие результаты. В данном обзоре представлены последние достижения в изучении нарушенного метаболизма липидов при колоректальном раке, механизмы, с помощью которых липидные метаболиты регулируют канцерогенез и прогрессирование опухоли, а также потенциальные терапевтические таргеты для будущих клинических испытаний.

Об авторах

М. В. Кручинина
НИИ терапии и профилактической медицины - филиал ИЦиГ СО РАН
Россия


А. А. Громов
НИИ терапии и профилактической медицины - филиал ИЦиГ СО РАН
Россия


Я. И. Прудникова
НИИ терапии и профилактической медицины - филиал ИЦиГ СО РАН
Россия


В. Н. Кручинин
ФГБУН Институт физики полупроводников им. А.В. Ржанова СО РАН
Россия


М. В. Шашков
ФГБУН Институт катализа им. Г.К. Борескова СО РАН
Россия


В. Н. Сидельников
ФГБУН Институт катализа им. Г.К. Борескова СО РАН
Россия


А. С. Соколова
ФГБУН Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
Россия


Н. Ф. Салахутдинов
ФГБУН Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН
Россия


Список литературы

1. Liu S.H., Alexander R.K., Lee C.H. Lipid metabolites as metabolic messengers in inter-organ communication // Trends in Endocrinology and Metabolism. 2014. Vol. 25. P. 356-363.

2. Glatz J.F., Luiken J.J. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake // Biochimie. 2017. Vol. 136. P. 21-26.

3. Scherer M., Montoliu I., Qanadli S.D. et al. Blood plasma lipidomic signature of epicardial fat in healthy obese women // Obesity (Silver Spring). 2015. Vol. 23. P. 130-137.

4. Kulkarni H., Mamtani M., Wong G. et al. Genetic correlation of the plasma lipidome with type 2 diabetes, prediabetes and insulin resistance in Mexican American families // BMC Genet. 2017. Vol. 18. P. 48.

5. May-Wilson S., Sud A., Law P.J. et al. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis // Eur. J. Cancer. 2017. Vol. 84. P. 228-238.

6. Yan G., Li L., Zhu B., Li Y. Lipidome in colorectal cancer // Oncotarget. 2016. Vol. 7. P. 33429-33439.

7. Mehdizadeh A., Bonyadi M., Darabi M. et al. Common chemotherapeutic agents modulate fatty acid distribution in human hepatocellular carcinoma and colorectal cancer cells // Bioimpacts. 2017. Vol. 7. P. 31-39.

8. Prentki M., Madiraju S.R. Glycerolipid metabolism and signaling in health and disease // Endocr. Rev. 2008. Vol. 29. P. 647-676.

9. Siebers M., Brands M., Wewer V. et al. Lipids in plant-microbe interactions // Biochim. Biophys. Acta. 2016. Vol. 1861. P. 1379-1395.

10. Wang D.D., Li Y., Chiuve S.E. et al. Association of specific dietary fats with total and cause-specific mortality // JAMA Intern. Med. 2016. Vol. 176. P. 1134-1145.

11. Briggs M.A., Petersen K.S., Kris-Etherton P.M. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk // Healthcare (Basel). 2017. Vol. 5.

12. Mente A., Dehghan M., Rangarajan S. et al. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study // Lancet Diabetes Endocrinol. 2017. Vol. 5. P. 774-787.

13. Eynard A.R., Lopez C.B. Conjugated linoleic acid (CLA) versus saturated fats/cholesterol: their proportion in fatty and lean meats may affect the risk of developing colon cancer // Lipids Health Dis. 2003. Vol. 2. P. 6-11.

14. Philip B., Roland C.L., Daniluk J., Liu Y., Chatterjee D., Gomez S.B., Ji B. et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice // Gastroenterology. 2013. Vol. 145. P. 1449-1458.

15. Ohland C.L., Jobin C. Bugs and food: a recipe for cancer? // Cell Metab. 2014. Vol. 20. P. 937-938.

16. Huang Q., Wen J., Chen G., Ge M., Gao Y., Ye X., Liu C. et al. Omega-3 polyunsaturated fatty acids inhibited tumor growth via preventing the decrease of genomic DNA methylation in colorectal cancer rats // Nutr. Cancer. 2016. Vol. 68. P. 113-119.

17. Song M., Nishihara R., Wu K., Qian Z.R., Kim S.A., Sukawa Y., Mima K. et al. Marine omega-3 polyunsaturated fatty acids and risk of colorectal cancer according to microsatellite instability // J. Natl. Cancer Inst. 2015. P. 107.

18. Beresford S.A., Johnson K.C., Ritenbaugh C. et al. Low-fat dietary pattern and risk of colorectal cancer: the women’s health initiative randomized controlled dietary modification trial // JAMA. 2006. Vol. 295. P. 643-654.

19. Prentice R.L., Caan B., Chlebowski R.T., Patterson R. et al. Low-fat dietary pattern and risk of invasive breast cancer: the women’s health initiative randomized controlled dietary modification trial // JAMA. 2006. Vol. 295. P. 629-642.

20. Habermann N., Schon A., Lund E.K., Glei M. Fish fatty acids alter markers of apoptosis in colorectal adenoma and adenocarcinoma cell lines but fish consumption has no impact on apoptosis-induction ex vivo // Apoptosis. 2010. Vol. 15. P. 621-630.

21. Kantor E.D., Lampe J.W., Peters U., Vaughan T.L., White E. Long-chain omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer // Nutr. Cancer. 2014. Vol. 66. P. 716-727.

22. Zhang C., Yu H., Shen Y., Ni X., Shen S., Das U.N. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway // Arch. Med. Sci. 2015. Vol. 11. P. 1081-1094.

23. Lee J.Y., Sim T.B., Lee J.E., Na H.K. Chemopreventive and chemotherapeutic effects of fish oil derived omega-3 polyunsaturated fatty acids on colon carcinogenesis // Clin. Nutr. Res. 2017. Vol. 6. P. 147-160.

24. Dupertuis Y.M., Meguid M.M., Pichard C. Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids // Curr. Opin. Clin. Nutr. Metab. Care. 2007. Vol. 10. P. 427-432.

25. Vasudevan A., Yu Y., Banerjee S., Woods J., Farhana L., Rajendra S.G., Patel A. et al. Omega-3 fatty acid is a potential preventive agent for recurrent colon cancer // Cancer Prev. Res. (Phila). 2014. Vol. 7. P. 1138-1148.

26. Lim K., Han C., Dai Y., Shen M., Wu T. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2 // Mol. Cancer Ther. 2009. Vol. 8. P. 3046-3055.

27. Ma C.J., Wu J.M., Tsai H.L., Huang C.W., Lu C.Y., Sun L.C., Shih Y.L. et al. Prospective double-blind randomized study on the efficacy and safety of an n-3 fatty acid enriched intravenous fat emulsion in postsurgical gastric and colorectal cancer patients // Nutr. J. 2015. Vol. 14. P. 9.

28. Das U.N., Madhavi N. Effect of polyunsaturated fatty acids on drug-sensitive and resistant tumor cells in vitro // Lipids Health Dis. 2011. Vol. 10. P. 159.

29. Pal’tseva E.M., Sekacheva M.I., Fedorov D.N., Skipenko O.G. Impact of preoperative chemotherapy on the expression of apoptosis factors in colorectal cancer liver metastases // Arkh. Patol. 2014. Vol. 76. P. 18-23.

30. Paluszczak J., Kleszcz R., Studzinska-Sroka E., Krajka-Kuzniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells // Mol. Cell Biochem. 2017. P. 1-16.

31. Ohmori H., Fujii K., Kadochi Y., Mori S., Nishiguchi Y., Fujiwara R., Kishi S. et al. Elaidic acid, a trans-fatty acid, enhances the metastasis of colorectal cancer cells // Pathobiology. 2017. Vol. 84. P. 144-151.

32. Muskiet F.A.J. Pathophysiology and evolutionary aspects of dietary fats and long-hain polyunsaturated fatty acids across the life cycle // Fat detection: taste, texture, and post ingestive effects / Eds. J.P. Montmayeur, J. le Coutre.: Boca Raton (FL). 2010. P. 103-135.

33. Michalak A., Mosinska P., Fichna J. Polyunsaturated fatty acids and their derivatives: therapeutic value for inflammatory, functional gastrointestinal disorders, and colorectal cancer // Front. Pharmacol. 2016. Vol. 7. P. 459-462.

34. Rifkin S.B., Shrubsole M.J., Cai Q., Smalley W.E., Ness R.M., Swift L.L., Zheng W. et al. PUFA levels in erythrocyte membrane phospholipids are differentially associated with colorectal adenoma risk // Br. J. Nutr. 2017. Vol. 117. P. 1615-1622.

35. Das S., Martinez L.R., Ray S. Phospholipid remodeling and eicosanoid signaling in colon cancer cells // Indian J. Biochem. Biophys. 2014. Vol. 51. P. 512-519.

36. Fazio C., Piazzi G., Vitaglione P., Fogliano V. et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by eicosapentaenoic acid-free fatty acid in colon cancer cells // Sci. Rep. 2016. Vol. 6. P. 20670.

37. Kato I., Vasquez A., Moyerbrailean G., Land S., Djuric Z., Sun J., Lin H.S. et al. Nutritional correlates of human oral microbiome // J. Am. Coll. Nutr. 2017. Vol. 36. P. 88-98.

38. Kim J., Oh S.W., Kim Y.S., Kwon H., Joh H.K., Lee J.E., Park D. et al. Association between dietary fat intake and colorectal adenoma in korean adults: A cross-sectional study // Medicine (Baltimore). 2017. Vol. 96. P. e5759.

39. Fretts A.M., Mozaffarian D., Siscovick D.S., King I.B., McKnight B., Psaty B.M., Rimm E.B. et al. Associations of plasma phospholipid SFAs with total and cause-specific mortality in older adults differ according to SFA chain length // J. Nutr. 2016. Vol. 146. P. 298-305.

40. Yang Q., Wang S., Ji Y., Chen H., Zhang H., Chen W., Gu Z. et al. Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract // Lipids Health Dis. 2017. Vol. 16. P. 10.

41. Igal R.A. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism // Biochim. Biophys. Acta. 2016. Vol. 1861. P. 1865-1880.

42. Kraja B., Muka T., Ruiter R., de Keyser C.E., Hofman A., Franco O.H., Stricker B.H. et al. Dietary fiber intake modifies the positive association between n-3 PUFA intake and colorectal cancer risk in a caucasian population // J. Nutr. 2015. Vol. 145. P. 1709-1716.

43. Xia H., Ma S., Wang S., Sun G. Meta-analysis of saturated fatty acid intake and breast cancer risk // Medicine (Baltimore). 2015. Vol. 94. P. e2391.

44. Doria M.L., Ribeiro A.S., Wang J., Cotrim C.Z., Domingues P., Williams C., Domingues M.R. et al. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival // FASEB J. 2014. Vol. 28. P. 4247-4264.

45. Angerer T.B., Magnusson Y., Landberg G., Fletcher J.S. Lipid heterogeneity resulting from fatty acid processing in the human breast cancer microenvironment identified by GCIB-ToF-SIMS imaging // Anal. Chem. 2016. Vol. 88. P. 11946-11954.

46. Cruz-Gil S., Sanchez-Martinez R., Gomez de Cedron M., Martin-Hernandez R., Vargas T., Molina S., Herranz J. et al. Targeting the metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role // J. Lipid Res. 2017.

47. Shaikh S., Channa N.A., Talpur F.N., Younis M., Tabassum N. Radiotherapy improves serum fatty acids and lipid profile in breast cancer // Lipids Health Dis. 2017. Vol. 16. P. 92.

48. Zhao J., Zhi Z., Wang C., Xing H., Song G., Yu X., Zhu Y. et al. Exogenous lipids promote the growth of breast cancer cells via CD36 // Oncol. Rep. 2017. Vol. 38. P. 2105-2115.

49. Ferguson L.R. Fish oils in parenteral nutrition: Why could these be important for gastrointestinal oncology? // World J. Gastrointest. Oncol. 2015. Vol. 7. P. 128-131.

50. Park J.M., Jeong M., Kim E.H., Han Y.M., Kwon S.H., Hahm K.B. Omega-3 polyunsaturated fatty acids intake to regulate helicobacter pylori-associated gastric diseases as nonantimicrobial dietary approach // Biomed. Res. Int. 2015. Vol. 2015. P. 712363.

51. Zarate R., El Jaber-Vazdekis N., Tejera N., Perez J.A., Rodriguez C. Significance of long chain polyunsaturated fatty acids in human health // Clin. Transl. Med. 2017. Vol. 6. P. 25.

52. Rescigno T., Capasso A., Tecce M.F. Effect of docosahexaenoic acid on cell cycle pathways in breast cell lines with different transformation degree // J. Cell Physiol. 2016. Vol. 231. P. 1226-1236.

53. Jensen B.C., Parry T.L., Huang W., Ilaiwy A., Bain J.R., Muehlbauer M.J., O’Neal S.K. et al. Non-targeted metabolomics analysis of the effects of tyrosine kinase inhibitors sunitinib and erlotinib on heart, muscle, liver and serum metabolism in vivo // Metabolites. 2017. Vol. 7.

54. Shakeri S., Amoozyan N., Fekrat F., Maleki M. Antigastric cancer bioactive aurantiochytrium oil rich in docosahexaenoic acid: from media optimization to cancer cells cytotoxicity assessment // J. Food Sci. 2017. Vol. 82. P. 2706-2718.

55. Ulmann L., Blanckaert V., Mimouni V., Andersson M.X., Schoefs B., Chenais B. Microalgal fatty acids and their implication in health and disease // Mini Rev. Med. Chem. 2017. Vol. 17. P. 1112-1123.

56. Kuriki K., Wakai K., Hirose K., Matsuo K., Ito H., Suzuki T., Saito T. et al. Risk of colorectal cancer is linked to erythrocyte compositions of fatty acids as biomarkers for dietary intakes of fish, fat, and fatty acids // Cancer Epidemiol. Biomarkers Prev. 2006. Vol. 15. P. 1791-1798.

57. Tokudome S., Kuriki K., Yokoyama Y., Sasaki M., Joh T., Kamiya T., Cheng J. et al. Dietary n-3/long-chain n-3 polyunsaturated fatty acids for prevention of sporadic colorectal tumors: a randomized controlled trial in polypectomized participants // Prostaglandins Leukot. Essent. Fatty Acids. 2015. Vol. 94. P. 1-11.

58. Ghuman S., van Hemelrijck M., Garmo H., Holmberg L., Malmstrom H., Lambe M., Hammar N. et al. Serum inflammatory markers and colorectal cancer risk and survival // Br. J. Cancer. 2017. Vol. 116. P. 1358-1365.

59. Demignot S., Beilstein F., Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders // Biochimie. 2014. Vol. 96. P. 48-55.

60. Agnihotri N., Sharma G., Rani I., Renuka Bhatnagar A. Fish oil prevents colon cancer by modulation of structure and function of mitochondria // Biomed. Pharmacother. 2016. Vol. 82. P. 90-97.

61. Lipkin S.M., Chao E.C., Moreno V., Rozek L.S., Rennert H., Pinchev M., Dizon D. et al. Genetic variation in 3-hydroxy-3-methylglutaryl CoA reductase modifies the chemopreventive activity of statins for colorectal cancer // Cancer Prev. Res. (Phila). 2010. Vol. 3. P. 597-603.

62. Rodriguez-Broadbent H., Law P.J., Sud A., Palin K., Tuupanen S., Gylfe A., Hanninen U.A. et al. Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer // Int. J. Cancer. 2017. Vol. 140. P. 2701-2708.

63. Jiang N., Zhang G., Pan L., Yan C., Zhang L., Weng Y., Wang W. et al. Potential plasma lipid biomarkers in early-stage breast cancer // Biotechnol. Lett. 2017.

64. Sakagami H., Hashimoto K., Suzuki F., Ishihara M., Kikuchi H., Katayama T., Satoh K. Tumor-specificity and type of cell death induced by vitamin K2 derivatives and prenylalcohols // Anticancer Res. 2008. Vol. 28. P. 151-158.

65. Bai Y., Zhang H., Sun X., Sun C., Ren L. Biomarker identification and pathway analysis by serum metabolomics of childhood acute lymphoblastic leukemia // Clin. Chim. Acta. 2014. Vol. 436. P. 207-216.

66. Sharma P., Bhattacharyya D.K., Kalita J. Disease biomarker identification from gene network modules for metastasized breast cancer // Sci. Rep. 2017. Vol. 7. P. 1072.

67. Hopperton K.E., Duncan R.E., Bazinet R.P., Archer M.C. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity // Exp. Cell Res. 2014. Vol. 320. P. 302-310.

68. Acharya N., Penukonda S., Shcheglova T., Hagymasi A.T., Basu S., Srivastava P.K. Endocannabinoid system acts as a regulator of immune homeostasis in the gut // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114. P. 5005-5010.

69. Aasrum M., Tjomsland V., Thoresen G.H., de Angelis P.M., Christoffersen T., Brusevold I.J. PI3K is required for both basal and LPA-induced DNA synthesis in oral carcinoma cells // J. Oral. Pathol. Med. 2016. Vol. 45. P. 425-432.

70. Zeng C., Wen B., Hou G., Lei L., Mei Z., Jia X., Chen X. et al. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis // Gigascience. 2017. Vol. 6. P. 1-11.

71. Fhaner C.J., Liu S., Ji H., Simpson R.J., Reid G.E. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines // Anal. Chem. 2012. Vol. 84. P. 8917-8926.

72. Oda S.K., Strauch P., Fujiwara Y., Al-Shami A., Oravecz T., Tigyi G., Pelanda R. et al. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression // Cancer Immunol. Res. 2013. Vol. 1. P. 245-255.

73. Milne S.B., Ivanova P.T., Armstrong M.D., Myers D.S., Lubarda J., Shulga Y.V., Topham M.K. et al. Dramatic differences in the roles in lipid metabolism of two isoforms of diacylglycerol kinase // Biochemistry. 2008. Vol. 47. P. 9372-9379.

74. Camp E.R., Patterson L.D., Kester M., Voelkel-Johnson C. Therapeutic implications of bioactive sphingolipids: A focus on colorectal cancer // Cancer Biol. Ther. 2017. Vol. 18. P. 640-650.

75. Separovic D., Shields A.F., Philip P.A., Bielawski J., Bielawska A., Pierce J.S., Tarca A.L. Altered levels of serum ceramide, sphingosine and sphingomyelin are associated with colorectal cancer: a retrospective pilot study // Anticancer Res. 2017. Vol. 37. P. 1213-1218.

76. Shen S., Yang L., Li L., Bai Y., Cai C., Liu H. A plasma lipidomics strategy reveals perturbed lipid metabolic pathways and potential lipid biomarkers of human colorectal cancer // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017. Vol. 1068-1069. P. 41-48.

77. Morad S.A., Madigan J.P., Levin J.C., Abdelmageed N., Karimi R., Rosenberg D.W., Kester M. et al. Tamoxifen magnifies therapeutic impact of ceramide in human colorectal cancer cells independent of p53 // Biochem. Pharmacol. 2013. Vol. 85. P. 1057-1065.

78. Prorok-Hamon M., Friswell M.K., Alswied A., Roberts C.L., Song F., Flanagan P.K., Knight P. et al. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer // Gut. 2014. Vol. 63. P. 761-770.

79. Arthur J.C., Perez-Chanona E., Muhlbauer M., Tomkovich S., Uronis J.M., Fan T.J., Campbell B.J. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota // Science. 2012. Vol. 338. P. 120-123.

80. Li J., Li C., Riccio R., Lauro G., Bifulco G., Li T.J., Tang H. et al. Chemistry and selective tumor cell growth inhibitory activity of polyketides from the south china sea sponge plakortis // Sp. Mar. Drugs. 2017. Vol. 15.

81. Notarnicola M., Messa C., Caruso M.G. A significant role of lipogenic enzymes in colorectal cancer // Anticancer Res. 2012. Vol. 32. P. 2585-2590.

82. Mika A., Kobiela J., Czumaj A., Chmielewski M., Stepnowski P., Sledzinski T. Hyper-elongation in colorectal cancer tissue - cerotic acid is a potential novel serum metabolic marker of colorectal malignancies // Cell Physiol. Biochem. 2017. Vol. 41. P. 722-730.

83. Peng L., Zhou Y., Wang Y., Mou H., Zhao Q. Prognostic significance of COX-2 immunohistochemical expression in colorectal cancer: a meta-analysis of the literature // PLoS One. 2013. Vol. 8. P. e58891.

84. Tae C.H., Kim S.E., Jung S.A., Joo Y.H., Shim K.N., Jung H.K., Kim T.H. et al. Involvement of adiponectin in early stage of colorectal carcinogenesis // BMC Cancer. 2014. Vol. 14. P. 811.

85. Atari-Hajipirloo S., Nikanfar S., Heydari A., Kheradmand F. Imatinib and its combination with 2,5-dimethyl-celecoxibinduces apoptosis of human HT-29 colorectal cancer cells // Res. Pharm. Sci. 2017. Vol. 12. P. 67-73.

86. Murata S., Yanagisawa K., Fukunaga K., Oda T., Kobayashi A., Sasaki R., Ohkohchi N. Fatty acid synthase inhibitor cerulenin suppresses liver metastasis of colon cancer in mice // Cancer Sci. 2010. Vol. 101. P. 1861-1865.

87. Dehmer S.P., Maciosek M.V., Flottemesch T.J., LaFrance A.B., Whitlock E.P. Aspirin for the primary prevention of cardiovascular disease and colorectal cancer: a decision analysis for the U.S. Preventive Services Task Force // Ann. Intern. Med. 2016. Vol. 164. P. 777-786.

88. Andersen V., Christensen J., Overvad K., Tjonneland A., Vogel U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes // BMC Cancer. 2010. Vol. 10. P. 484.

89. Dong Y., Wang Z., Xie G.F., Li C., Zuo W.W., Meng G., Xu C.P. et al. Pregnane X receptor is associated with unfavorable survival and induces chemotherapeutic resistance by transcriptional activating multidrug resistance-related protein 3 in colorectal cancer // Mol. Cancer. 2017. Vol. 16. P. 71.

90. Jordan S.D., Kriebs A., Vaughan M., Duglan D., Fan W., Henriksson E., Huber A.L. et al. CRY1/2 selectively repress PPARdelta and limit exercise capacity // Cell Metab. 2017. Vol. 26. P. 243-255.

91. Kwok A.H., Wang Y., Ho W.S. Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro // Phytomedicine. 2016. Vol. 23. P. 558-565.

92. Arriba M., Garcia J.L., Rueda D., Perez J., Brandariz L., Nutu O.A., Alonso L. et al. Unsupervised analysis of array comparative genomic hybridization data from early-onset colorectal cancer reveals equivalence with molecular classification and phenotypes // Neoplasia. 2017. Vol. 19. P. 28-34.

93. Mehdawi L., Osman J., Topi G., Sjolander A. High tumor mast cell density is associated with longer survival of colon cancer patients // Acta Oncol. 2016. Vol. 55. P. 1434-1442.

94. Yudina Y., Parhamifar L., Bengtsson A.M., Juhas M., Sjolander A. Regulation of the eicosanoid pathway by tumour necrosis factor alpha and leukotriene D4 in intestinal epithelial cells // Prostaglandins Leukot. Essent. Fatty Acids. 2008. Vol. 79. P. 223-231.

95. Jaksevicius A., Carew M., Mistry C., Modjtahedi H., Opara E.I. Inhibitory effects of culinary herbs and spices on the growth of HCA-7 colorectal cancer cells and their COX-2 expression // Nutrients. 2017. Vol. 9.

96. Luo C., Zhang H. The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer // Mediators Inflamm. 2017. Vol. 2017. P. 5126048.

97. Hull M.A., Sandell A.C., Montgomery A.A., Logan R.F., Clifford G.M., Rees C.J., Loadman P.M. et al. A randomized controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme (The seAFOod Polyp Prevention Trial): study protocol for a randomized controlled trial // Trials. 2013. Vol. 14. P. 237.

98. Tian R., Zuo X., Jaoude J., Mao F., Colby J., Shureiqi I. ALOX15 as a suppressor of inflammation and cancer: Lost in the link // Prostaglandins Other Lipid Mediat. 2017. Vol. 132. P. 77-83.

99. He Q., Chen H.Y., Bai E.Q., Luo Y.X., Fu R.J., He Y.S., Jiang J. et al. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer // Cancer Genet. Cytogenet. 2010. Vol. 202. P. 1-10.

100. Zhang K., Hu Z., Qi H., Shi Z., Chang Y., Yao Q., Cui H. et al. G-protein-coupled receptors mediate omega-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway // Oncotarget. 2016. Vol. 7. P. 58315-58330.

101. Fujii K., Luo Y., Fujiwara-Tani R., Kishi S., He S., Yang S., Sasaki T. et al. Pro-metastatic intracellular signaling of the elaidic trans fatty acid // Int. J. Oncol. 2017. Vol. 50. P. 85-92.

102. Murphy A.G., Casey R., Maguire A., Tosetto M., Butler C.T., Conroy E., Reynolds A.L. et al. Preclinical validation of the small molecule drug quininib as a novel therapeutic for colorectal cancer // Sci. Rep. 2016. Vol. 6. P. 34523.

103. Yoon K.W., Park S.Y., Kim J.Y., Lee S.M., Park C.H., Cho S.B., Lee W.S. et al. Leptin-induced adhesion and invasion in colorectal cancer cell lines // Oncol. Rep. 2014. Vol. 31. P. 2493-2498.

104. Zafari V., Hashemzadeh S., Hosseinpour Feizi M., Pouladi N., Rostami Zadeh L., Sakhinia E. mRNA expression of nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors in colorectal carcinoma // Bosn. J. Basic Med. Sci. 2017. Vol. 17. P. 255-261.

105. Broholm C., Olsson A.H., Perfilyev A., Hansen N.S., Schrolkamp M., Strasko K.S., Scheele C. et al. Epigenetic programming of adipose-derived stem cells in low birthweight individuals // Diabetologia. 2016. Vol. 59. P. 2664-2673.

106. Aleksandrova K., Jenab M., Bueno-de-Mesquita H.B., Fedirko V., Kaaks R., Lukanova A., van Duijnhoven F.J. et al. Biomarker patterns of inflammatory and metabolic pathways are associated with risk of colorectal cancer: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) // Eur. J. Epidemiol. 2014. Vol. 29. P. 261-275.

107. Bentley D.J., Ackerman J., Clifford T., Slattery K.S. Acute and chronic effects of antioxidant supplementation on exercise performance // Antioxidants in Sport Nutrition / eds. M. Lamprecht: Boca Raton (FL). 2015. P. 1-45.

108. Katkoori V.R., Manne U., Chaturvedi L.S., Basson M.D., Haan P., Coffey D., Bumpers H.L. Functional consequence of the p53 codon 72 polymorphism in colorectal cancer // Oncotarget. 2017. Vol. 8. P. 76574-76586.

109. Casado J., Inigo-Chaves A., Jimenez-Ruiz S.M., Rios-Arrabal S., Carazo-Gallego A., Gonzalez-Puga C., Nunez M.I. et al. AA-NAT, MT1 and MT2 correlates with cancer stem-like cell markers in colorectal cancer: study of the influence of stage and p53 status of tumors // Int. J. Mol. Sci. 2017. Vol. 18.

110. Regnell S.E., Lernmark A. Hepatic steatosis in type 1 diabetes // Rev. Diabet. Stud. 2011. Vol. 8. P. 454-467.

111. Hua X., Phipps A.I., Burnett-Hartman A.N., Adams S.V., Hardikar S., Cohen S.A., Kocarnik J.M. et al. Timing of aspirin and other nonsteroidal anti-inflammatory drug use among patients with colorectal cancer in relation to tumor markers and survival // J. Clin. Oncol. 2017. Vol. 35. P. 2806-2813.

112. Lee K., G A.P. The interaction between the Wnt/beta-catenin signaling cascade and PKG activation in cancer // J. Biomed. Res. 2017. Vol. 31. P. 189-196.

113. Fajardo A.M., Piazza G.A. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention // Am. J. Physiol. Gastrointest. Liver Physiol. 2015. Vol. 309. P. G59-G70.

114. Greenspan E.J., Madigan J.P., Boardman L.A., Rosenberg D.W. Ibuprofen inhibits activation of nuclear {beta}-catenin in human colon adenomas and induces the phosphorylation of GSK-3{beta} // Cancer Prev. Res. (Phila). 2011. Vol. 4. P. 161-171.

115. Ertem F.U., Zhang W., Chang K., Mohaiza Dashwood W., Rajendran P., Sun D., Abudayyeh A. et al. Oncogenic targets Mmp7, S100a9, Nppb and Aldh1a3 from transcriptome profiling of FAP and Pirc adenomas are downregulated in response to tumor suppression by Clotam // Int. J. Cancer. 2017. Vol. 140. P 460-468.

116. Ricciardiello L., Ahnen D.J., Lynch P.M. Chemoprevention of hereditary colon cancers: time for new strategies // Nat. Rev. Gastroenterol. Hepatol. 2016. Vol. 13. P. 352-361.

117. Tsioulias G.J., Go M.F., Rigas B. NSAIDs and colorectal cancer control: promise and challenges // Curr. Pharmacol. Rep. 2015. Vol. 1. P. 295-301.

118. Nanji S., Tsang M.E., Wei X., Booth C.M. Regional lymph node involvement in patients undergoing liver resection for colorectal cancer metastases // Eur. J. Surg. Oncol. 2017. Vol. 43. P. 322-329.

119. Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. Global cancer statistics // CA Cancer J. Clin. 2011. Vol. 61. P. 69-90.

120. Siegel R., Desantis C., Jemal A. Colorectal cancer statistics, 2014 // CA Cancer J. Clin. 2014. Vol. 64. P. 104-117.


Рецензия

Для цитирования:


Кручинина М.В., Громов А.А., Прудникова Я.И., Кручинин В.Н., Шашков М.В., Сидельников В.Н., Соколова А.С., Салахутдинов Н.Ф. ИЗМЕНЕНИЯ ЛИПИДОМА ПРИ КОЛОРЕКТАЛЬНОМ РАКЕ. Атеросклероз. 2018;14(1):50-64. https://doi.org/10.15372/ATER20180107

For citation:


Kruchinina M.V., Gromov A.A., Prudnikova I.I., Kruchinin V.N., Shashkov M.V., Sidelnikov V.N., Sokolova A.S., Salakhutdinov N.F. CHANGES OF LIPIDOM IN COLORECTAL CANCER. Ateroscleroz. 2018;14(1):50-64. (In Russ.) https://doi.org/10.15372/ATER20180107

Просмотров: 617


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)