Фиброзный процесс при атеросклерозе
Аннотация
В обзоре приводятся современные представления о вариантах развития атеросклеротического повреждения сосудов, дается описание атерогенеза как хронического воспалительного и фибропластического процесса, характеризуются основные медиаторы и цитокины, участвующие в эволюции атеросклеротической бляшки. Основной акцент делается на роли в атерогенезе взаимоотношений мононуклеарных фагоцитов и клеток-продуцентов соединительной ткани.
Об авторах
Я. Ш. ШварцРоссия
Яков Шмулевич Шварц, канд. мед. наук, научный сотрудник
СО РАМН
ФГБУ «НИИ терапии»
лаборатория молекулярно-клеточных механизмов терапевтических заболеваний
630089
ул. Бориса Богаткова, 175/1
Новосибирск
Е. А. Чересиз
Россия
Екатерина Александровна Чересиз, младший научный сотрудник
СО РАМН
ФГБУ «НИИ терапии»
лаборатория молекулярно-клеточных механизмов терапевтических заболеваний
630089
ул. Бориса Богаткова, 175/1
Новосибирск
Список литературы
1. Loppnow H., Werdan K., Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms // Innate Immun. 2008. Vol. 14, N 2. P. 63–87.
2. Soliman A., Kee P. Experimental models investigating the inflammatory basis of atherosclerosis // Curr. Atheroscler. Rep. 2008. Vol. 10, N 3. P. 260–271.
3. Rekhter M. D. Collagen synthesis in atherosclerosis: too much and not enough // Cardiovasc. Res. 1999. Vol. 41. P. 376–384.
4. Kullo I. J., Edwards W. D., Schwartz R. S. Vulnerable plaque: pathobiology and clinical implications // Ann Intern. Med. 1998. Vol. 129. P. 1050–1060.
5. Kovanen P. T., Mäyranpää M., Lindstedt K. A. Drug therapies to prevent coronary plaque rupture and erosion: present and future // Handb. Exp. Pharmacol. 2005. Vol. 170. P. 745–776.
6. Shah P. K. Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion // Prog Cardiovasc. Dis. 2002. Vol. 44, N 5. P. 357–368.
7. Оганов Р. Г. Вклад сердечно-сосудистых и других неинфекционных заболеваний в здоровье населения России / Р. Г. Оганов, Г. Я. Масленникова // Сердце. – 2003. – № 2. – С. 58–61.
8. Маколкин В. Современные особенности лечения стабильной стенокардии / В. Маколкин, К. Осадчий. – URL: https://www.eurolab-portal.ru/encyclopedia/565/46175/
9. Верещагин Н. В. Принципы диагностики и лечения больных в остром периоде инсульта / Н. В. Верещагин, М. А. Пирадов, З. А. Суслина. – НИИ неврологии РАМН, Научный центр по изучению инсульта Минздрава РФ. – Москва. – URL: http://www.nedug.ru/lib/lit/nevrol/01nov/nevrol20/nevrol.htm
10. Волков В. И. Фармакотерапия атеросклероза: решенные и нерешенные вопросы / В. И. Волков. – URL: http://journal.ukrcardio.org/cardio_archive/2003/4/volkov.htm
11. Stary H. C. Natural history and histological classification of atherosclerotic lesions: an update // Arterioscler. Thromb. Vasc. Biol. 2000. Vol. 20. P. 1177–1178.
12. Stary H. C., Chandler A. B., Dinsmore R. E. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the committee on vascular lesions of the council on arteriosclerosis // Am. Heart Association. Circulation. 1995. Vol. 92. P. 1355–1374.
13. Stary H. C., Chandler A. B., Glagov S. et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the committee on vascular lesions of the council on arteriosclerosis // Am. Heart Association. Arterioscler. Thromb. 1994. Vol. 14. P. 840–856.
14. Davies M. J., Thomas T. The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1981. Vol. 294. P. 225–229.
15. Davies M. J. Stability and instability: two faces of coronary atherosclerosis // Circulation. 1996. Vol. 94. P. 2013–2020.
16. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi // Br. Heart J. 1983. Vol. 50. P. 127–134.
17. Virmani R., Kolodgie F. D., Burke A. P. et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions // Arterioscler. Thromb. Vasc. Biol. 2000. Vol. 20. P. 1262–1275.
18. Ross R. Atherosclerosis – an inflammatory disease // N. Engl. J. Med. 1999. Vol. 340. P. 115–126.
19. Plenz G., Dorszewski A., Breithardt G., Robenek H. Expression of type VIII collagen after cholesterol diet and injury in the rabbit model of atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 1999. Vol. 19. P. 1201–1209.
20. Adiguzel E., Ahmad P. J., Franco C. and Bendeck M. P. Collagens in the progression and complications of atherosclerosis // Vascular Medicine. 2009. Vol. 14, N 1. P. 73–89.
21. Kolodgie F. D., Narula J., Burke A. P. et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death // Am. J. Pathol. 2000. Vol. 157. P. 1259–1268.
22. Van der Wal A. C., Becker A. E., van der Loos C. M., Das P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology // Circulation. 1994. Vol. 89. P. 36–44.
23. Farb A., Burke A. P., Tang A. L. et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death // Circulation. 1996. Vol. 93. P. 1354–1363.
24. Virmani R., Burke A. P., Farb A. Plaque rupture and plaque erosion // Thromb. Haemost. 1999. Vol. 82. Suppl. 1. P. 1–3.
25. Blankenberg S., Barbaux S., Tiret L. Adhesion molecules and atherosclerosis // Atherosclerosis. 2003. Vol. 170. P. 191–203.
26. Wolman M., Gaton E. Reappraisal of the role of macrophages in the pathogenesis of atherosclerosis // Pathobiology. 1991. Vol. 59, N 2. P. 92–95.
27. Gaton E., Wolman M. Macrophage activation in the prevention or regression of atherosclerosis // Adv. Exp. Med. Biol. 1984. Vol. 168. P. 15–36.
28. Osterud B., Bjorklid E. Role of monocytes in atherogenesis // Physiol. Rev. 2003. Vol. 83. P. 1069–1112.
29. Cybulsky M., Gimbrone Jr. M. A. A major role for VCAM-1 but not ICAM-1 in early atherosclerosis // J. Clin. Invest. 2001. Vol. 107. P. 1255–1262.
30. Libby P. Inflammation in atherosclerosis // Nature. 2002. Vol. 420. P. 868–874.
31. Topper J. N., Gimbrone M. A. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype // Mol. Med. Today. 1999. Vol. 5. P. 40–46.
32. Mehra V. C., Ramgolam V. S., Bender J. R. Cytokines and cardiovascular disease // J. Leukoc. Biol. 2005. Vol. 78. P. 805–818.
33. Tedgui A., Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways // Physiol. Rev. 2006. Vol. 86. P. 515–581.
34. Ignatowski A. Wirkung de tierischen Nahrung auf den Kaninchenorganismus // Ber. Milit-med Akad. 1908. Vol. 16. P. 154–176.
35. Anitschkow N., Chalatov S. Ueber experimentalle Cholesterinsteatose // Zbl. Allg. Path. Path. Anat. 1913. Vol. 24. P. 1–9.
36. Медведев Ж. А. Холестерин: наш друг или враг? / Ж. А. Медведев // Наука и жизнь. – 2008. – № 1. – С. 60–64.
37. Медведев Ж. А. Холестерин: наш друг или враг? / Ж. А. Медведев // Наука и жизнь. – 2008. – № 2. – С. 62–67.
38. Epstein S. E., Zhu J., Najafi A. H., Burnett M. S. Insights into the role of infection in atherogenesis and in plaque rupture // Circulation. 2009. Vol. 119. P. 3133–3141.
39. Heistad D. D. Oxidative Stress and Vascular Disease // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. 689–695.
40. Antoniades C., Antonopoulos A. S., Tousoulis D. et al. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials // Eur. Heart J. 2009. Vol. 30. P. 6–15.
41. Berliner J. A., Territo M. C., Sevanian A. et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions // J. Clin. Invest. 1990. Vol. 85, N 4. P. 1260–1266.
42. Brown M. S., Goldstein J. L. A receptor-mediated pathway for cholesterol homeostasis // Science. 1986. Vol. 232. P. 34–47.
43. Sakamoto Y., Miyazaki A., Tamagawa H. et al. Specific interaction of oxidized low-density lipoprotein with thrombospondin-1 inhibits transforming growth factor-beta from its activation // Atherosclerosis. 2005. Vol. 183, N 1. P. 85–93.
44. Collins T., Cybulsky M. I. NF-κB: pivotal mediator or innocent bystander in atherogenesis? // J. Clin. Invest. 2001. Vol. 107. P. 255–264.
45. Ramchandran R., Mehta D., Vogel S. M. et al. Critical role of Cdc42 in mediating endothelial barrier protection in vivo // Am. J. Physiol. Lung Cell Mol. Physiol. 2008. Vol. 295, N 2. P. L363–L369.
46. Newby A. C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates // Cardiovascular. Research. 2006. Vol. 69. P. 614–624.
47. Orekhov A. N., Andreeva E. R., Krushinski A. V. et al. Intimal cells and atherosclerosis: Relationship between the number of intimal cells and major manifestations of atherosclerosis in the human heart // Am. J. Pathol. 1986. Vol. 125. P. 402–415.
48. Newby A. C., Zaltsman A. B. Fibrous cap formation or destruction — the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation // Cardiovascular. Research. 1999. Vol. 41. P. 345–360.
49. Ильинская О. П. Выявление с помощью гнездовой полимеразной цепной реакции клеток костно-мозгового происхождения в неоинтимальном утолщении сонной артерии крысы / О. П. Ильинская [и др.] // Онтогенез. – 2008. – T. 39, № 4. – C. 282–288.
50. Ильинская О. П. Происхождение клеток неоинтимы, образованной в сонных артериях крыс, после баллонной ангиопластики / О. П. Ильинская [и др.] // Цитология. – 2003. – T. 45, № 7. – C. 678–689.
51. Hillebrands J.-L., Klatter F. A., van den Hurk B. M. et al. Origin of neointimal endothelium and α-actin-positive smooth muscle cells in transplant arteriosclerosis. // J. Clin. Invest. 2001. Vol. 107, N 11. P. 1411–1422.
52. Hillebrands J.-L., Klatter F. A., Rozing J. Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant arteriosclerosis // Arterioscler. Thromb. Vasc. Biol. 2003. Vol. 3. P. 380–387.
53. Kocher O., Gabbiani G. Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells // Hum. Pathol. 1984. Vol. 17. P. 875–880.
54. Wilcox J. N., Smith K. M., Williams L. T. et al. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization // J. Clin. Invest. 1988. Vol. 82. P. 1134–1143.
55. Glukhova M., Kabakov A., Frid M. Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon and actin expression // Proc. Nat. Acad. Sci. USA. 1988. Vol. 85. P. 9542–9546.
56. Shi Y., O’Brien J., Fard A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries // Circulation. 1996. Vol. 94. P. 1655–1664.
57. Wilcox J., Scott N. Potential role of the adventitia in arteritis and atherosclerosis // Int. J. Cardiol. 1996. Vol. 54. P. S21–S35.
58. Holifield B., Helgason T., Jemelka S. et al. Differentiated vascular myocytes: are they involved in neointimal formation? // J. Clin. Invest. 1996. Vol. 97, N 3. P. 814–825.
59. Frid M. G., Dempsey E. C., Durmowitcz A. G., Stenmark K. R. Smooth muscle cell heterogeneity in pulmonary and systemic vessels: Importance in vascular disease // Arterioscler. Thromb. Vasc. Biol. 1997. Vol. 17. P. 1203–1209.
60. Zalewski A., Shi Y., Johnson A. G. Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? // Circ. Res. 2002. Vol. 91. P. 652–655.
61. Benditt E. P., Benditt J. M. Evidence for a monoclonal origin of human atherosclerotic plaques // Proc. Natl. Acad. Sci. USA. 1973. Vol. 70. P. 1753–1756.
62. Murry C. E., Gipaya C. T., Bartosek T. et al. Monoclonality of smooth muscle cells in human atherosclerosis // Am. J. Pathol. 1997. Vol. 151. P. 697–705.
63. Schwartz S. M., Heimark R. L., Majesky M. W. Developmental mechanisms underlying pathology of arteries // Physiol. Rev. 1990. Vol. 70. P. 1177–1209.
64. Schwartz S. M., Murry C. E. Proliferation and the monoclonal origins of atherosclerotic lesions // Annu. Rev. Med. 1998. Vol. 49. P. 437– 460.
65. Doran A. C., Meller N., McNamara C. A. Role of smooth muscle cells in the initiation and early progression of atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28. P. 812–819.
66. Owens G. K., Kumar M. S., Wamhoff B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease // Physiol Rev. 2004. Vol. 84. P. 767–801.
67. Ang A. H., Tachas G., Campbell J. H. et al. Collagen synthesis by cultured rabbit aortic smooth-muscle cells. Alteration with phenotype // Biochem. J. 1990. Vol. 265. P. 461–469.
68. Campbell J. H., Campbell G. R. The role of smooth muscle cells in atherosclerosis // Curr. Opin. Lipidol. 1994. Vol. 5. P. 323–330.
69. Rong J. X., Shapiro M., Trogan E., Fisher E. A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100. P. 13531–13536.
70. Pidkovka N. A., Cherepanova O. A., Yoshida T. et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro // Circ. Res. 2007. Vol. 101. P. 792–801.
71. Takahashi M., Takahashi S., Suzuki C. et al. IL-1beta attenuates beta-very low-density lipoprotein uptake and its receptor expression in vascular smooth muscle cells // J. Mol. Cell Cardiol. 2005. Vol. 38. P. 637–646.
72. Lim H. J., Lee S., Lee K. S. et al. PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs // Prostaglandins Other Lipid Mediat. 2006. Vol. 80. P. 165–174.
73. Wagsater D., Olofsson P. S., Norgren L. et al. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by INF gamma // Biochem. Biophys. Res. Commun. 2004. Vol. 325. P. 1187–1193.
74. Nagao S., Murao K., Imachi H. et al. Platelet derived growth factor regulates ABCA1 expression in vascular smooth muscle cells // FEBS Lett. 2006. Vol. 580. P. 4371–4376.
75. Leitinger. N. «Obese» Smooth Muscle Cells Fail to Assemble Collagen Fibrils // Circ. Res. 2009. Vol. 104, N 7. P. 826–828.
76. Raines E. W., Ferri N. Thematic review series: The immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease // J. Lipid Res. 2005. Vol. 46. P. 1081–1092.
77. Clarke M. C., Figg N., Maguire J. J., Davenport A. P. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis // Nat. Med. 2006. Vol. 12. P. 1075–1080.
78. McCaffrey T. A., Consigli S., Du B. et al. Decreased type II / type I TGF-β receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-β1 // J. Clin. Invest. 1995. Vol. 96, N 6. P. 2667–2675.
79. McCaffrey T. A., Du B., Consigli S. et al. Genomic instability in the type II TGF-b1 receptor gene in atherosclerotic and restenotic vascular cells // J. Clin. Invest. 1997. Vol. 100. P. 2182–2188.
80. Lutgens E., Gijbels M., Smook M. Transforming Growth Factor-β Mediates Balance Between Inflammation and Fibrosis During Plaque Progression // Arterioscler. Thromb. Vasc. Biol. 2002. Vol. 22. P. 975–982.
81. Smith J. D., Bryant S. R., Couper L. L. et al. Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth // Circ. Res. 1999. Vol. 84. P. 1212–1222.
82. Mallat Z., Gojova A., Marchiol-Fournigault C. et al. Inhibition of transforming growth factor-β signalling accelerates atherosclerosis and induces an unstable plaque phenotype in mice // Circ. Res. 2001. Vol. 89. P. 930–934.
83. Cipollone F., Fazia M., Mincione G. et al. Increased Expression of Transforming Growth Factor-β1 as a Stabilizing Factor in Human Atherosclerotic Plaques // Stroke. 2004. Vol. 35. P. 2253–2257.
84. Koch W., Hoppmann P., Mueller J. C. et al. Association of Transforming Growth Factor-Я1 Gene Polymorphisms With Myocardial Infarction in Patients With Angiographically Proven Coronary Heart Disease // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 1114–1119.
85. Ramji D. P., Singh N. N., Foka P. et al. Transforming growth factor-β-regulated expression of genes in macrophages implicated in the control of cholesterol homoeostasis // Biochem. Soc. Transactions. 2006. Vol. 34, N 6. P. 1141–1144.
86. Panousis C. G., Evans G., Zuckerman S. H. et al. TGF-beta increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-gamma // J. Lipid Res. 2001. Vol. 42, N 5. P. 856–863.
87. Irvine S. A., Foka P., Rogers S. A. et al. A critical role for the Sp1-binding sites in the transforming growth factor-Я-mediated inhibition of lipoprotein lipase gene expression in macrophages // Nucleic Acids Res. 2005. Vol. 33. P. 1423–1434.
88. Mead J. R., Ramji D. P. The pivotal role of lipoprotein lipase in atherosclerosis // Cardiovascular. Research. 2002. Vol. 55. P. 261–269.
89. Mead J. R., Irvine S. A., Ramji D. P. Lipoprotein lipase: structure, function, regulation, and role in disease // J. Mol. Med. 2002. Vol. 80, N 12. P. 753–769.
90. Greenow K., Pearce N. J., Ramji D. P. The key role of apolipoprotein E in atherosclerosis // J. Mol. Med. 2005. Vol. 83, N 5. P. 329–342.
91. Newby A. C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture // Physiol. Rev. 2005. Vol. 85. P. 1–31.
92. Lindstedt K. A., Leskinen M. J., Kovanen P. T. Proteolysis of the Pericellular Matrix. A Novel Element Determining Cell Survival and Death in the Pathogenesis of Plaque Erosion and Rupture // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. P. 1350–1358.
93. Rodriguez C., Martinez-Gonzalez J., Raposo B. et al. Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases // Cardiovasc. Res. 2008. Vol. 79, N 1. P. 7–13.
94. Brasselet C., Durand E., Addad F. et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury // Am. J. Physiol. Heart. Circ. Phys. 2005. Vol. 289. P. H2228–H2233.
95. Clarke M. C. H., Bennett M. R. Cause or Consequence: What Does Macrophage Apoptosis Do in Atherosclerosis? // Arterioscler. Thromb. Vasc. Biol. 2009. Vol. 29. P. 153–155.
96. Tabas I. Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis: The Importance of Lesion Stage and Phagocytic Efficiency // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 2255–2264.
97. Gautier E. L., Huby T., Witztum J. L. et al. Macrophage Apoptosis Exerts Divergent Effects on Atherogenesis as a Function of Lesion Stage // Circulation. 2009. Vol. 119. P. 1795–1804.
98. Seimon T., Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis // J. Lipid Res. 2009. Vol. 50. P. S382–S387.
99. Harvey E. J., Ramji D. P. Interferon-γ and atherosclerosis: Pro- or anti-atherogenic? // Cardiovascular. Research. 2005. Vol. 67, N 1. P. 11–20.
100. Fang M., Kong X., Li P. RFXB and its splice variant RFXBSV mediate the antagonism between IFNγ and TGFβ on COL1A2 transcription in vascular smooth muscle cells // Nucleic Acids Res. 2009. Vol. 37: P. 4393–4406.
Рецензия
Для цитирования:
Шварц Я.Ш., Чересиз Е.А. Фиброзный процесс при атеросклерозе. Атеросклероз. 2011;7(2):57-66.
For citation:
Shwartz Ya.Sh., Сheresiz Ye.A. Fibrotic process in atherosclerosis. Ateroscleroz. 2011;7(2):57-66. (In Russ.)