Preview

Атеросклероз

Расширенный поиск

Современные биомаркеры окислительного стресса, оцениваемые методом иммуноферментного анализа

https://doi.org/10.52727/2078-256X-2021-17-4-79-92

Аннотация

В литературном обзоре представлены результаты исследований последних лет, посвященных изучению роли факторов и маркеров окислительного стресса в развитии терапевтических заболеваний, особенно сердечно-сосудистых. Описаны результаты исследований, выполненных с помощью методов иммуноферментного анализа, таких биомаркеров окислительного стресса, как глутатионпероксидаза, супероксиддисмутаза, окислительно модифицированные липопротеины низкой плотности, карбонилированные белки, а также общая антиоксидантная способность крови.

Об авторах

М. В. Волкова
Научно-исследовательский институт терапии и профилактической медицины – филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия

Марина Васильевна Волкова, младший научный сотрудник, лаборатория клинических биохимических и гормональных исследований терапевтических заболеваний

630089, г. Новосибирск, ул. Бориса Богаткова, 175/1



Ю. И. Рагино
Научно-исследовательский институт терапии и профилактической медицины – филиал Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия

Юлия Игоревна Рагино, д-р мед. наук, проф., главный научный сотрудник, лаборатория клинических биохимических и гормональных исследований терапевтических заболеваний

630089, г. Новосибирск, ул. Бориса Богаткова, 175/1



Список литературы

1. Marrocco I., Altieri F., Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative Medicine and Cellular Longevity, 2017; 6501046: 1–32. doi:10.1155/2017/6501046

2. Robson R., Kundur A.R., Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr., 2018 (3): 455–462. doi:10.1016/j.dsx.2017.12.029

3. Dubois-Deruy E., Peugnet V., Turkieh A., Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants (Basel), 2020; 9 (9): 864. doi:10.3390/antiox9090864

4. Lorenzon Dos Santos J., Quadros A.S., Weschenfelder C., Garofallo S.B., Marcadenti A. Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients, 2020; 12 (3): 682. doi:10.3390/nu12030682

5. Cheraghi M., Ahmadvand H., Maleki A., Babaeenezhad E., Shakiba S., Hassanzadeh F. Oxidative stress status and liver markers in coronary heart disease. Rep. Biochem. Mol. Biol., 2019; 8 (1): 49–55.

6. Kibel A., Lukinac A.M., Dambic V., Juric I., SelthoferRelatic K. Oxidative Stress in Ischemic Heart Disease. Oxid. Med. Cell. Longev., 2020: 6627144. doi:10.1155/2020/6627144

7. Pisoschi A.M., Pop A., Iordache F., Stanca L., Predoi G., Serban A.I. Oxidative stress mitigation by antioxidants – An overview on their chemistry and influences on health status. Eur. J. Med. Chem., 2021; 209: 112891. doi:10.1016/j.ejmech.2020.112891

8. Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic. Biol. Med., 2018; 120: 425–440. doi:10.1016/j.freeradbiomed.2018.04.001

9. Hamedifard Z., Farrokhian A., Reiner Ž., Bahmani F., Asemi Z., Ghotbi M., Taghizadeh M. The effects of combined magnesium and zinc supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Lipids Health Dis., 2020; 19 (1): 112. doi:10.1186/s12944-020-01298-4

10. Raygan F., Bahmani F., Kouchaki E., Aghadavod E., Sharifi S., Akbari E., Heidari A., Asemi Z. Comparative effects of carbohydrate versus fat restriction on metabolic profiles, biomarkers of inflammation and oxidative stress in overweight patients with type 2 diabetic and coronary heart disease: A randomized clinical trial. ARYA Atheroscler., 2016; 12 (6): 266–273.

11. Wickremasinghe D., Peiris H., Chandrasena L.G., Senaratne V., Perera R. Case control feasibility study assessing the association between severity of coronary artery disease with Glutathione Peroxidase-1 (GPX-1) and GPX-1 polymorphism (Pro198Leu). BMC Cardiovasc. Disord., 2016; 16: 111. doi:10.1186/s12872-016-0280-9

12. Dubois-Deruy E., Peugnet V., Turkieh A., Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants (Basel), 2020; 9 (9): 864. doi:10.3390/antiox9090864

13. Steyn M., Zitouni K., Kelly F.J., Cook P., Earle K.A. Sex differences in glutathione peroxidase activity and central obesity in patients with type 2 diabetes at high risk of cardio-renal disease. Antioxidants (Basel), 2019; 8 (12): 629. doi:10.3390/antiox8120629

14. Crawford A., Fassett R.G., Coombes J.S., Kunde D.A., Ahuja K.D., Robertson I.K., Ball M.J., Geraghty D.P. Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease. Nephrol. Dial. Transplant, 2011; 26: 2806–2813. doi:10.1093/ndt/gfq828

15. Pang P., Abbott M., Abdi M., Fucci Q.A., Chauhan N., Mistri M., Proctor B., Chin M., Wang B., Yin W., Lu T.S., Halim A., Lim K., Handy D.E., Loscalzo J., Siedlecki A.M. Pre-clinical model of severe glutathione peroxidase-3 deficiency and chronic kidney disease results in coronary artery thrombosis and depressed left ventricular function. Nephrol. Dial. Transplant., 2018; 33 (6): 923–934. doi:10.1093/ndt/gfx304

16. Raygan F., Ostadmohammadi V., Bahmani F., Reiter R.J., Asemi Z. Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr., 2019; 38 (1): 191–196. doi:10.1016/j.clnu.2017.12.004

17. Holley A., Pitman J., Miller J., Harding S., Larsen P. Glutathione peroxidase activity and expression levels are significantly increased in acute coronary syndromes. J. Investig. Med., 2017; 65 (5): 919–925. doi:10.1136/jim-2016-000361

18. Pisoschi A.M., Pop A., Iordache F., Stanca L., Predoi G., Serban A.I. Oxidative stress mitigation by antioxidants – an overview on their chemistry and influences on health status. Eur. J. Med. Chem., 2021; 209: 112891. doi:10.1016/j.ejmech.2020.112891

19. Souiden Y., Mallouli H., Meskhi S., Chaabouni Y., Rebai A., Chéour F., Mahdouani K. MnSOD and GPx1 polymorphism relationship with coronary heart disease risk and severity. Biol. Res., 2016; 49: 22. doi:10.1186/s40659-016-0083-6

20. Decharatchakul N., Settasatian C., Settasatian N., Komanasin N., Kukongviriyapan U., Intharaphet P., Senthong V. Association of genetic polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with hypertriglyceridemia and low HDL-C level in subjects with high risk of coronary artery disease. PeerJ., 2019; 7: e7407. doi:10.7717/peerj.7407

21. Decharatchakul N., Settasatian C., Settasatian N., Komanasin N., Kukongviriyapan U., Intharaphet P., Senthong V. Association of combined genetic variations in SOD3, GPX3, PON1, and GSTT1 with hypertension and severity of coronary artery disease. Heart Vessels., 2020; 35 (7): 918–929. doi:10.1007/s00380-020-01564-6

22. Rivas-Urbina A., Benitez S., Perez A., Sanchez-Quesada J.L. Modified low-density lipoproteins as biomarkers in diabetes and metabolic syndrome. Front Biosci (Landmark Ed), 2018; 23: 1220–1240. doi:10.2741/4640

23. Kattoor A.J., Kanuri S.H., Mehta J.L. Role of Ox-LDL and LOX-1 in atherogenesis. Curr. Med. Chem., 2019; 26 (9): 1693–1700. doi:10.2174/0929867325666180508100950

24. Trpkovic A., Resanovic I., Stanimirovic J., Radak D., Mousa S.A., Cenic-Milosevic D., Jevremovic D., Isenovic E.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci., 2015; 52 (2): 70–85. doi:10.3109/10408363.2014.992063

25. Lopes-Virella M.F., Bebu I., Hunt K.J., Virella G., Baker N.L., Braffett B., Gao X., Lachin J.M.; DCCT/ EDIC Research Group. Immune complexes and the risk of CVD in type 1 diabetes. Diabetes, 2019; 68 (9): 1853–1860. doi:10.2337/db19-0358

26. Itabe H., Kato R., Sawada N., Obama T., Yamamoto M. The significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions. Curr. Med. Chem., 2019; 26 (9): 1576–1593. doi:10.2174/0929867325666180307114855

27. Gao S., Zhao D., Wang M., Zhao F., Han X., Qi Y., Liu J. Association between circulating oxidized ldl and atherosclerotic cardiovascular disease: a meta-analysis of observational studies. Can. J. Cardiol., 2017; 33 (12): 1624–1632. doi:10.1016/j.cjca.2017.07.015

28. Kehm R., Baldensperger T., Raupbach J., Höhn A. Protein oxidation – Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox. Biol., 2021; 42: 101901. doi:10.1016/j.redox.2021.101901

29. Bollineni R.C., Fedorova M., Blüher M., Hoffmann R. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus. J. Proteome Res., 2014; 13 (11): 5081–5093. doi:10.1021/pr500324y

30. König J., Jung T., Grune T. Protein carbonylation in aging and senescence. In: protein carbonylation. Editor Joaquim Ros: John Wiley & Sons, Inc., 2017. P. 272. ISBN: 9781119374947

31. Hauck A.K., Huang Y., Hertzel A.V., Bernlohr D.A. Adipose oxidative stress and protein carbonylation. J. Biol. Chem., 2019; 294 (4): 1083–1088. doi:10.1074/jbc.R118.003214

32. Almogbel E., Rasheed N. Elevated levels of protein carbonylation in patients with diabetic nephropathy: therapeutic and diagnostic prospects. Am. J. Med. Sci., 2019; 358 (1): 26–32. doi:10.1016/j.amjms.2019.03.011

33. Gryszczyńska B., Formanowicz D., Budzyń M., Wanic-Kossowska M., Pawliczak E., Formanowicz P., Majewski W., Strzyżewski K.W., Kasprzak M.P., Iskra M. Advanced oxidation protein products and carbonylated proteins as biomarkers of oxidative stress in selected atherosclerosis-mediated diseases. Biomed. Res. Int., 2017; 2017: 4975264. doi:10.1155/2017/4975264

34. Sultan C.S., Saackel A., Stank A., Fleming T., Fedorova M., Hoffmann R., Wade R.C., Hecker M., Wagner A.H. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol., 2018; 16: 113–122. doi:10.1016/j.redox.2018.02.018

35. Kehm R., Baldensperger T., Raupbach J., Höhn A. Protein oxidation – Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol., 2021; 42: 101901. doi:10.1016/j.redox.2021.101901

36. Mallard A.R., Hollekim-Strand S.M., Ingul C.B., Coombes J.S. High day-to-day and diurnal variability of oxidative stress and inflammation biomarkers in people with type 2 diabetes mellitus and healthy individuals. Redox Rep., 2020; 25 (1): 64–69. doi:10.1080/13510002.2020.1795587


Рецензия

Для цитирования:


Волкова М.В., Рагино Ю.И. Современные биомаркеры окислительного стресса, оцениваемые методом иммуноферментного анализа. Атеросклероз. 2021;17(4):79-92. https://doi.org/10.52727/2078-256X-2021-17-4-79-92

For citation:


Volkova M.V., Ragino Y.I. Modern biomarkers of oxidative stress estimated by immuno-enzymal analysis. Ateroscleroz. 2021;17(4):79-92. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-4-79-92

Просмотров: 863


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)