Cердечно-сосудистые заболевания в сочетании с вирусной инфекцией SARS-CoV-2: течение и прогноз
https://doi.org/10.52727/2078-256X-2021-17-3-97-105
Аннотация
В условиях пандемии особую группу составляют пациенты с сердечно-сосудистой патологией. Сердечно-сосудистые заболевания в значительной степени связаны с ростом смертности и повышенным риском осложнений у лиц, пораженных вирусом SARS-CoV-2. Это определяет важность стратификации риска, выбора оптимальной персонализированной терапии и изучения отдаленного прогноза инфаркта миокарда на фоне инфекции, вызванной SARS-CoV-2. Несмотря на стремительно растущее внимание к данному вопросу, механизмы взаимосвязи между сердечно-сосудистыми заболеваниями и COVID-19 не полностью ясны. Нами выполнен систематический обзор с целью обобщить важные аспекты COVID-19 для кардиологов. Авторами обсуждаются как хорошо изученные факторы инфекционного процесса, приводящие к острому повреждению миокарда и декомпенсации имеющихся хронических кардиологических заболеваний, так и новые, фундаментальные, определяющие прогноз и лечение. Использованы сведения по теме из публикаций на основе баз данных PubMed, Google Scholar и eLibrary.ru. Работа проведена при поддержке компании Пфайзер.
Ключевые слова
Об авторах
О. И. ГущинаРоссия
Олеся Игоревна Гущина, аспирант кафедры факультетской терапии им. проф. Г.Д. Залесского
м.т. +7923 179 6066, SPIN ID: 7709-0829
630091, Россия, Новосибирск, Красный просп., 52
Н. Г. Ложкина
Россия
Наталья Геннадьевна Ложкина, д-р мед. наук, проф. кафедры факультетской терапии им. проф. Г.Д. Залесского; куратор отделения для лечения больных с острым коронарным синдромом РСЦ № 1 ГКБ № 1
SPIN ID: 5320-7554
630091, Россия, Новосибирск, Красный просп., 52
Список литературы
1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 47. https://web.archive.org/web/20200308150245/https://www.who.int/docs/default-source/coronaviruse/situationreports/20200307-sitrep-47-covid-19.pdf (accessed April 21, 2020).
2. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020; 323 (13): 1239–1242. doi: 10.1001/jama.2020.2648
3. Guan W., Ni Z., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. doi: 10.1056/NEJMoa2002032
4. Wang D., Hu B., Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020. doi: 10.1001/jama.2020.1585
5. Du Y., Tu L., Zhu P. et al. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study. Am. J. Respir. Crit. Care Med., 2020; 201 (11): 1372–1379. doi: 10.1164/rccm.202003-0543OC
6. Chen T. Wu D., Chen H. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Br. Med. J., 2020; 1091 (March): m1091. doi: 10.1136/bmj. m1091 Li B
7. Characteristics of COVID-19 patients dying in Italy Report based on available data on March 20th, 2020 https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_20_marzo_eng.pdf
8. Akhtar Z., Chowdhury F., Aleem M.A. et al. Undiagnosed SARS-CoV-2 infection and outcome in patients with acute MI and no COVID-19 symptoms. Open Heart, 2021; 8: e001617. doi: 10.1136/openhrt-2021-001617)
9. Carfм A., Bernabei R., Landi F.; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA, 2020; 324 (6): 603–605. doi: 10.1001/jama.2020.12603
10. Helms J., Kremer S., Merdji H. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med., 2020; 382 (23): 2268–2270. doi: 10.1056/NEJMc2008597
11. Leisman D.E., Ronner L., Pinotti R. et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med., 2020; 8 (12): 1233–1244. doi: 10.1016/S2213-2600(20)30404-5
12. Rochwerg B., Parke R., Murthy S. et al. Misinformation during the coronavirus disease 2019 outbreak: how knowledge emerges from noise. Crit. Care. Explor., 2020; 2 (4): e0098. doi: 10.1097/CCE.0000000000000098
13. Dickson R.P., Erb-Downward J.R., Martinez F.J., Huffnagle G.B. The microbiome and the respiratory tract. Annu. Rev. Physiol., 2016; 78: 481–504. doi: 10.1146/annurev-physiol-021115-105238
14. Wang W., Xu Y., Gao R. et al. Detection of SARSCoV-2 in different types of clinical specimens. JAMA, 2020; 323 (18): 1843-1844. doi: 10.1001/jama.2020.3786
15. Wang C., Xie J., Zhao L. et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine, 2020; 57: 102833. doi: 10.1016/j.ebiom.2020.102833
16. Totura A.L., Whitmore A., Agnihothram S. et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio, 2015; 6 (3): e00638-15. doi: 10.1128/mBio.00638-15
17. Bastard P., Rosen L.B., Zhang Q. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020; 370 (6515): eabd4585. doi: 10.1126/science.abd4585
18. Hadjadj J., Yatim N., Barnabei L. et al Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 2020; 369 (6504): 718–724. doi: 10.1126/science.abc6027
19. Cugno M., Meroni P.L., Gualtierotti R. et al. Complement activation in patients with COVID-19: A novel therapeutic target. J .Allergy Clin. Immunol., 2020; 146 (1): 215–217. doi: 10.1016/j.jaci.2020.05.006
20. Holter J.C., Pischke S.E., de Boer E. et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc. Natl. Acad. Sci. USA, 2020; 117 (40): 25018–25025. doi: 10.1073/pnas.2010540117
21. Bao J., Li C., Zhang K. et al. Comparative analysis of laboratory indexes of severe and non-severe patients infected with COVID-19. Clin. Chim. Acta, 2020; 509: 180–194. doi: 10.1016/j.cca.2020.06.009
22. Taneera J., El-Huneidi W., Hamad M. et al. Expression profile of SARS-CoV-2 host receptors in human pancreatic islets revealed upregulation of ACE2 in diabetic donors. Biology (Basel), 2020; 9 (8): 215. doi: 10.3390/biology9080215
23. Pal R., Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J. Endocrinol. Invest., 2020; 43 (7): 1027–1031. doi: 10.1007/s40618-020-01276-8
24. Yang L., Han Y., Nilsson-Payant B.E. et al. A human pluripotent stem cell-based platform to study SARSCoV-2 tropism and model virus infection in human cells and organoids. Cell Stem. Cell, 2020; 27 (1): 125–136.e7. doi: 10.1016/j.stem.2020.06.015
25. Fosbшl E.L., Butt J.H., Шstergaard L. et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality. JAMA, 2020; 324 (2): 168–177. doi: 10.1001/jama.2020.11301
26. Nielsen T.B., Pantapalangkoor P., Yan J. et al. Diabetes exacerbates infection via hyperinflammation by signaling through TLR4 and RAGE. mBio, 2017; 8 (4): e00818-17. doi: 10.1128/mBio.00818-17. PMID: 28830942; PMCID: PMC5565964.
27. Quinti I., Lougaris V., Milito C. et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J. Allergy Clin. Immunol., 2020; 146 (1): 211-213.e4. doi: 10.1016/j.jaci.2020.04.013
28. Soresina A., Moratto D., Chiarini M. et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr. Allergy Immunol., 2020; 31 (5): 565–569. doi: 10.1111/pai.13263
29. Montero-Escribano P., Matнas-Guiu J., Gуmez-Iglesias P. et al. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Mult. Scler. Relat. Disord., 2020; 42: 102185. doi: 10.1016/j.msard.2020.102185
30. Galani I.E., Rovina N., Lampropoulou V. et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat. Immunol., 2021; 22 (1): 32–40. doi: 10.1038/s41590-020-00840-x
31. Sinha P., Calfee C.S., Cherian S. et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir. Med., 2020; 8 (12): 1209–1218. doi: 10.1016/S2213-2600(20)30366-0
32. Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020; 579: 270–273. doi: 10.1038/s41586-020-2012-7
33. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020; 181 (2): 271–280. doi: 101016/j.cell.2020.02.052
34. Tikellis C., Thomas M.C. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int. J. Pept., 2012; 2012: 256294–256294. doi: 101155/2012/256294
35. Zhang H., Penninger J.M., Li Y. et al. Angiotensinconverting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020; 46 (4): 586–590. doi: 101007/s00134-020-05985-9
36. Jirak P., Larbig R., Shomanova Z. et al. Myocardial injury in severe COVID-19 is similar to pneumonias of other origin: results from a multicentre study. ESC Heart Fail., 2021; 8 (1): 37–46. doi: 10.1002/ehf2.13136
37. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020; 395 (10234): 1417–1418. doi: 10.1016/S0140-6736(20)30937-5
38. Buja L.M., Wolf D.A., Zhao B. et al. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovasc. Pathol., 2020; 48: 107233. doi: 10.1016/j.carpath.2020.107233
39. Sadegh Beigee F., Pourabdollah Toutkaboni M., Khalili N. et al. Diffuse alveolar damage and thrombotic microangiopathy are the main histopathological findings in lung tissue biopsy samples of COVID-19 patients. Pathol. Res. Pract., 2020; 216 (10): 153228. doi: 10.1016/j.prp.2020.153228
40. Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol., 2007; 170: 1136–1147
41. Schaefer I.M., Padera R.F., Solomon I.H. et al. In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod. Pathol., 2020; 33 (11): 2104–2114. doi: 10.1038/s41379-020-0595-z
42. Su H., Yang M., Wan C. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int., 2020; 98 (1): 219–227. doi: 10.1016/j.kint.2020.04.003
43. Li G., Fan Y., Lai Y. et al. Coronavirus infections and immune responses. Med. Virol., 2020; 92 (4): 424–32. doi: 101002/jmv.25685
44. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med., 2020; 383 (2): 120–128. doi: 10.1056/NEJMoa2015432
45. Copin M.C., Parmentier E., Duburcq T. et al. Time to consider the histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med., 2020; 46 (6): 1124–1126. doi: 10.1007/s00134-020-06057-8
46. Zhang Y., Xiao M., Zhang S. et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N. Engl. J. Med., 2020; 382 (17): e38. doi: 10.1056/NEJMc2007575
47. Sinha P., Calfee C.S., Cherian S. et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir. Med., 2020; 8 (12): 1209–1218. doi: 10.1016/S2213-2600(20)30366-0
48. Gill S.E., Dos Santos C.C., O’Gorman D.B. et al. Transcriptional profiling of leukocytes in critically ill COVID19 patients: implications for interferon response and coagulation. Intensive Care Med. Exp., 2020; 8 (1): 75. doi: 10.1186/s40635-020-00361-9
49. Lippi G., Lavie C.J., Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog. Cardiovasc. Dis., 2020; 63 (3): 390–391. doi: 10.1016/j.pcad.2020.03.001
50. Deng Q., Hu B., Zhang Y. et al. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol., 2020; 311: 116–121. doi: 10.1016/j.ijcard.2020.03.087
51. Kotecha T., Knight D.S., Razvi Y. et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J., 2021; 42 (19): 1866–1878. doi: 10.1093/eurheartj/ehab075
Рецензия
Для цитирования:
Гущина О.И., Ложкина Н.Г. Cердечно-сосудистые заболевания в сочетании с вирусной инфекцией SARS-CoV-2: течение и прогноз. Атеросклероз. 2021;17(3):97-105. https://doi.org/10.52727/2078-256X-2021-17-3-97-105
For citation:
Gushchina O.I., Lozhkina N.G. Cardiovascular diseases in combination with SARS-CoV-2 viral infection: cours and forecast. Ateroscleroz. 2021;17(3):97-105. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-3-97-105