Preview

Атеросклероз

Расширенный поиск

Биомаркеры кальцификации, их связь с заболеваниями сердечно-сосудистой системы и значение в клинической практике

https://doi.org/10.52727/2078-256X-2021-17-2-72-82

Аннотация

 Данный литературный обзор посвящен актуальным проблемам сосудистой кальцификации с акцентом на связи  некоторых биохимических маркеров сосудистой  кальцификации (в приоритете остеопротегерин и остеопонтин) с сердечно-сосудистыми заболеваниями и другими ассоциированными состояниями. Также многие  аспекты нижеприведенных исследований имеют  непосредственно прикладной, клинический характер, а  некоторые положения помогают внести ясность в патофизиологию сосудистой кальцификации. Цель настоящего обзора – обобщение и систематизация актуальных знаний о вкладе биохимических маркеров сосудистой кальцификации в патологические процессы,  происходящие в сосудистой стенке и приводящие в конечном итоге сосудистого континуума к сердечно-сосудистым событиям. В обзоре представлены самые современные данные отечественных и зарубежных исследований, посвящённые сосудистой кальцификации. Для его подготовки использованы базы данных PubMed, Google Scholar, ScienceDirect, MDPI, Hindawi, Oxford  Academic. 

Об авторах

Н. А. Маслацов
НИИ терапии и профилактической медицины – филиал ФГБНУ ФИЦ Институт цитологии и генетики СО РАН
Россия

 аспирант, младший научный сотрудник

 630089, Новосибирск, ул. Бориса Богаткова, 175/1 



Ю. И. Рагино
НИИ терапии и профилактической медицины – филиал ФГБНУ ФИЦ Институт цитологии и генетики СО РАН
Россия

 д-р мед. наук, проф., чл.-корр. РАН, руководитель 

 630089, Новосибирск, ул. Бориса Богаткова, 175/1 



Список литературы

1. Kim M., Lee S.P., Kwak S., Yang S., Kim Y.G., Andreini D., Al-Mallah M.H., Budoff M.J., Cademartiri F., Chinnaiyan K., Choi J.H., Conte E., Marques H., Gonçalves P.A., Gottlieb I., Hadamitzky M., Leipsic J.A., Maffei E., Pontone G., Raff G.L., Shin S., Lee B.K., Chun E.J., Sung J.M., Lee S.E., Berman D.S., Lin F.Y., Virmani R., Samady H., Stone P.H., Narula J., Bax J.J., Shaw L.J., Min J.K., Chang H.J. Impact of age on coronary artery plaque progression and clinical outcome: A PARADIGM substudy. J. Cardiovasc. Computed Tomography, 2020; 15 (3): 232–239. doi: 10.1016/j.jcct.2020.09.009

2. Nicoll R., Henein M. Arterial calcification: A new perspective? Inter. J. Cardiol., 2017; 228: 11–22. doi: 10.1016/j.ijcard.2016.11.099

3. Sánchez-Duffhues G., García de Vinuesa A., van de Pol V., Geerts M.E., de Vries M.R., Janson S. GT, van Dam H., Lindeman J.H., Goumans M.J., ten Dijke P. Inflammation induces endothelial-tomesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J. Pathol., 2019; 247 (3): 333–346. doi: 10.1002/path.5193

4. Phadwal K., Feng D., Zhu D., MacRae V.E. Autophagy as a novel therapeutic target in vascular calcification. Pharmacol. Ther., 2020; 206: 107430. doi: 10.1016/j.pharmthera.2019.107430

5. Zaker B., Ardalan M. Vascular calcification; Stony bridge between kidney and heart. J. Cardiovasc. Thorac. Res. 2020; 12 (3): 165–171. doi: 10.34172/jcvtr.2020.29

6. Jaminon A., Reesink K., Kroon A., Schurgers L. The Role of Vascular Smooth Muscle Cells in Arterial Remodeling: Focus on Calcification-Related Processes. Int. J. Mol. Sci., 2019; 20 (22): 5694. doi: 10.3390/ijms20225694

7. van Rosendael A.R., Cainzos-Achirica M., Al-Mallah M.H. Calcified plaque morphology, density, and risk. Atherosclerosis, 2020; 311: 100–102. doi: 10.1016/j.atherosclerosis.2020.08.022

8. Strauss H.W., Nakahara T., Narula N., Narula J. Vascular Calcification: The Evolving Relationship of Vascular Calcification to Major Acute Coronary Events. J. Nuclear Medicine, 2019; 60 (9): 1207–1212. doi: 10.2967/jnumed.119.230276

9. Yang T., Guo L., Chen L., Li J., Li Q., Pi Y., Zhu J., Zhang L. A novel role of FKN/CX3CR1 in promoting osteogenic transformation of VSMCs and atherosclerotic calcification. Cell Calcium., 2020; 91: 102265. doi: 10.1016/j.ceca.2020.102265

10. Hortells L., Sur S., St. Hilaire C. Cell Phenotype Transitions in Cardiovascular Calcification. Front. Cardiovasc. Med., 2018; 5 (27): 1–9. doi: 10.3389/fcvm.2018.00027

11. Danial J.S.H., Murad F., Saez A.J.G., Moawad M.R., Urrico G.S., Vancheri F., Henein M.Y. Computed Histological Quantification of Atherosclerotic Plaque Microcalcifications. Angiology, 2020; 71 (10): 916–919. doi: 10.1177/0003319720939466

12. Jinnouchi H., Sato Y., Sakamoto A., Cornelissen A., Mori M., Kawakami R., Gadhoke N.V., Kolodgie F.D., Virmani R., Finn A.V. Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis, 2020; 306: 85–95. doi: 10.1016/j.atherosclerosis.2020.05.017

13. Pugliese L., Spiritigliozzi L., di Tosto F., Ricci F., Cavallo A.U., di Donna C., de Stasio V., Presicce M., Benelli L., D’Errico F., Pasqualetto M., Floris R., Chiocchi M. Association of plaque calcification pattern and attenuation with instability features and coronary stenosis and calcification grade. Atherosclerosis, 2020; 311: 150–157. doi: 10.1016/j.atherosclerosis.2020.06.021

14. Healy A., Berus J.M., Christensen J.L., Lee С., Mantsounga C., Dong W., Watts Jr.J.P., Assali M., Ceneri N., Nilson R., Neverson J., Wu W.C., Choudhary G., Morrison A.R. Statins Disrupt Macrophage Rac1 Regulation Leading to Increased Atherosclerotic Plaque Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020; 40: 714–732. doi: 10.1161/ATVBAHA.119.313832

15. Huang X., D’Addabbo J., Nguyen P.K. Coronary artery calcification: More than meets the eye. J. Nucl. Cardiol., 2020; 1071–3581. doi: 10.1007/s12350-020-02058-8

16. Gijsen F.J.H., Vis B., Barrett H.E., Zadpoor A., Verhagen H.J., Bos D., van der Steen A.F.W., Akyildiz A.C. Morphometric and Mechanical Analyses of Calcifications and Fibrous Plaque Tissue in Carotid Arteries for Plaque Rupture Risk Assessment. IEEE Trans Biomed Eng., 2020; 68 (4): 1429–1438. doi: 10.1109/TBME.2020.3038038

17. Kan Y., He W., Ning B., Li H., Wei S., Yu T. The correlation between calcification in carotid plaque and stroke: calcification may be a risk factor for stroke. Int. J. Clin. Exp. Pathol., 2019; 12 (3): 750–758.

18. Pugliese L., Spiritigliozzi L., di Tosto F., Ricci F., Cavallo A.U., di Donna C., de Stasio V., Presicce M., Benelli L., D’Errico F., Pasqualetto M., Floris R., Chiocchi C. Association of plaque calcification pattern and attenuation with instability features and coronary stenosis and calcification grade. Atherosclerosis, 2020; 311: 150–157. doi: 10.1016/j.atherosclerosis.2020.06.021

19. Lee S.J., Lee I.K., Jeon J.H. Vascular Calcification – New Insights into Its Mechanism. Int. J. Mol. Sci., 2020; 21 (8): 2685. doi: 10.3390/ijms21082685

20. Wang J., Zhou J.J., Robertson G.R., Lee V.W. Vitamin D in Vascular Calcification: A Double-Edged Sword? Nutrients, 2018; 10 (5): 652. doi: 10.3390/nu10050652

21. Passeri E., Mazzaccaro D., Sansoni V., Perego S., Nano G., Verdelli C., Lombardi G., Corbetta S. Effects of 12-months treatment with zoledronate or teriparatide on intima-media thickness of carotid artery in women with postmenopausal osteoporosis: A pilot study. Int. J. Immunopathol. Pharmacol., 2019; 33: 1–7. doi: 10.1177/2058738418822439

22. Tong X., Chen M., Song R., Zhao H., Bian J., Gu J., Liu Z. Overexpression of c-Fos reverses osteoprotegerin-mediated suppression of osteoclastogenesis by increasing the Beclin1- induced autophagy. J. Cell Mol. Med., 2021; 25 (2): 937–945. doi: 10.1111/jcmm.16152

23. Rochette L., Meloux A., Rigal E., Zeller M., Cottin Y., Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol. Ther., 2018; 182: 115–132. doi: 10.1016/j.pharmthera.2017.08.015

24. Rochette L., Meloux A., Rigal E., Zeller M., Cottin Y., Vergely C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int. J. Mol. Sci., 2019; 20 (3): 1–19. doi: 10.3390/ijms20030705

25. Chung J., Kim H.L., Pyo Lee J., Lim W.H., Seo J.B., Kim S.H., Zo J.H., Kim M.A. Association of the Serum Osteoprotegerin Level With Target Organ Damage in Patients at High Risk of Coronary Artery Disease. Circ. J., 2020; 85 (1): 69–76. doi: 10.1253/circj.CJ-20-0675

26. Yee Lok Z.S., Lyle A.N. Osteopontin in Vascular Disease: Friend or Foe? Arterioscler. Thromb. Vasc. Biol., 2019; 39 (4): 613–622. doi: 10.1161/ATVBAHA.118.311577

27. Scatena M., Liaw L., Giachelli C.M. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler. Thromb. Vasc. Biol., 2007; 27 (11): 2302–2309. doi: 10.1161/ATVBAHA.107.144824

28. Bäck M., Aranyi T., Cancela M.L., Carracedo M., Conceição N., Leftheriotis G., Macrae V., Martin L., Nitschke Y., Pasch A., Quaglino D., Rutsch F., Shanahan C., Sorribas V., Szeri F., Valdivielso P., Vanakker O., Kempf H. Endogenous Calcification Inhibitors in the Prevention of Vascular Calcification: A Consensus Statement From the COST Action EuroSoftCalcNet. Front. Cardiovasc. Med., 2019; doi: 10.3389/fcvm.2018.00196

29. Zwakenberg S.R., de Jong P.A., Hendriks E.J., Westerink J., Spiering W., de Borst G.J., Cramer M.J., Bartstra J.W., Doesburg T., Rutters F., van der Heijden A.A., Schalkwijk C., Schurgers L.J., van der Schouw Y.T., Beulens J.W.J. Intimal and medial calcification in relation to cardiovascular risk factors. PLoS One, 2020; 15 (7): 1–14. doi: 10.1371/journal.pone.0235228

30. Lee C.J., Wang J.H., Chen M.L., Yang C.F., Chen Y.C., Hsu B.G. Serum osteoprotegerin is associated with arterial stiffness assessed according to the cardio-ankle vascular index in hypertensive patients. J. Atheroscler. Thromb., 2015; 22 (3): 304–12. doi: 10.5551/jat.25882

31. Maniatis K., Siasos G., Oikonomou E., Vavuranakis M., Zaromytidou M., Mourouzis K., Paraskevopoulos T., Charalambous G., Papavassiliou A.G., Tousoulis D. Osteoprotegerin and Osteopontin Serum Levels are Associated with Vascular Function and Inflammation in Coronary Artery Disease Patients. Curr. Vasc. Pharmacol., 2020; 18 (5): 523–530. doi: 10.2174/1570161117666191022095246

32. Tousoulis D., Siasos G., Maniatis K., Oikonomou E., Kioufis S., Zaromitidou M., Paraskevopoulos T., Michalea S., Kollia C., Miliou A., Kokkou E., Papavassiliou A.G., Stefanadis C. Serum osteoprotegerin and osteopontin levels are associated with arterial stiffness and the presence and severity of coronary artery disease. Int. J. Cardiol., 2013; 167 (5): 1924–1928. doi: 10.1016/j.ijcard.2012.05.001

33. Albu A., Fodor D., Bondor C., Crăciun A.M. Bone metabolism regulators and arterial stiffness in postmenopausal women. Maturitas, 2013; 76 (2): 146–150. doi: 10.1016/j.maturitas.2013.07.001

34. Morisawa T., Nakagomi A., Kohashi K., Kosugi M., Kusama Y., Atarashi H., Shimizu W. Osteoprotegerin is Associated With Endothelial Function and Predicts Early Carotid Atherosclerosis in Patients With Coronary Artery Disease. Int. Heart. J., 2015; 56 (6): 605–612. doi: 10.1536/ihj.15-150

35. Strobescu-ciobanu C., Giuşcă S.E., Căruntu I.D., Amălinei C., Rusu A., Cojocaru E., Popa R.F., Lupaşcu C.D. Osteopontin and osteoprotegerin in atherosclerotic plaque– are they significant markers of plaque vulnerability? Rom. J. Morphol. Embryol., 2020; 61 (3): 793–801. doi: 10.47162/RJME.61.3.y

36. Cao Y., Cui C., Zhao H., Pan X., Li W., Wang K., Ma A. Plasma Osteoprotegerin Correlates with Stroke Severity and the Occurrence of Microembolic Signals in Patients with Acute Ischemic Stroke. Hindawi Disease Markers, 2019; 2019 (090364): 1–7. doi: 10.1155/2019/3090364

37. Wajda J., Świat M., Owczarek A.J., Holecki M., Duława J., Brzozowska A., Olszanecka-Glinianowicz M., Chudek J. Osteoprotegerin Assessment Improves Prediction of Mortality in Stroke Patients. J. Stroke and Cerebrovascular Diseases. 2019; 28 (5): 1160–1167. doi: 10.1016/j.jstrokecerebrovasdis.2019.01.006

38. Hyseni A., Roest M., Braun S.L., Barendrecht A.D., de Groot P.G., Ndrepepa G., Kastrati A. Chronic dysfunction of the endothelium is associated with mortality in acute coronary syndrome patients. Thromb Res., 2013; 131 (3): 198–203. doi: 10.1016/j.thromres.2012.12.001

39. Wang H.H., Xiang G.D. Changes of plasma concentration of osteoprotegerin and its association with endothelial dysfunction before and after hypouricemic therapy in patients with hyperuricemia. Mod. Rheumatol., 2015; 25 (1): 123–127. doi: 10.3109/14397595.2014.926852

40. Dessein P.H., Lуpez-Mejias R., González-Juanatey C., Genre F., Miranda-Filloy J.A., Llorca J., GonzálezGay M.A. Independent relationship of osteoprotegerin concentrations with endothelial activation and carotid atherosclerosis in patients with severe rheumatoid arthritis. J. Rheumatol., 2014; 41 (3): 429–436. doi: 10.3899/jrheum.131037

41. Golledge J., Leicht A.S., Crowther R.G., Glanville S., Clancy P., Sangla K.S., Spinks W.L., Quigley F. Determinants of endothelial function in a cohort of patients with peripheral artery disease. Cardiology, 2008; 111 (1): 51–56. doi: 10.1159/000113428

42. Ge Q., Ruan C.C., Ma Y., Tang X.F., Wu Q.H., Wang J.G., Zhu D.L., Gao P.J. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci. Rep., 2017; 7 (40253): 1–9. doi: 10.1038/srep40253

43. Schreier M., Schwartze J.T., Landgraf K., Scheuermann K., Erbs S., Herberth G., Pospisilik J.A., Kratzsch J., Kiess W., Körner A. Osteopontin is BMIindependently Related to Early Endothelial Dysfunction in Children. J. Clin. Endocrinol. Metab., 2016; 101 (11): 4161–4169. doi: 10.1210/jc.2016-2238

44. Secchiero P., Corallini F., Pandolfi A., Consoli A., Candido R., Fabris B., Celeghini C., Capitani S., Zauli G. An increased osteoprotegerin serum release characterizes the early onset of diabetes mellitus and may contribute to endothelial cell dysfunction. Am. J. Pathol., 2006; 169 (6): 2236–2244. doi: 10.2353/ajpath.2006.060398

45. Rajendran N.D. A study of osteoprotegerin as a predictor of myocardial infarction in type 2 diabetes mellitus patients. The Tamilnadu Dr.M.G.R. Medical University Chennai, 2019.

46. Kremzer A.A. Plasma osteoprotegerin as a marker of documented coronary atherosclerosis in type two diabetes mellitus patients. Biological Markers in Fundamental and Clinical Medicine, 2019; 3 (1): 100–101. doi: 10.29256/v.03.01.2019.escbm01-89

47. Firdouse M.S., Nanda N., Satheesh S., Jasmine M.R. Association of osteoprotegerin and lipid risk factors with severity of stenosis in coronary artery disease patients with diabetes mellitus. Biomedicine. 2020; 40 (1): 32–35. doi: 10.51248/.v40i1.96

48. Maddaloni E., Park K., di Guida M., Coraggio L., Luordi C., D’onofrio L., Baroni M.G., Cavallo M.G., D’angelo P., de Cosmo S., Leonetti F., Morano S., Morviducci L., Pozzilli P., Prudente S., Pugliese G., Trischitta V., Holman R.R., King G.L., Buzzetti R. Osteoprotegerin Induces Endothelial Dysfunction and Is Associated with Vascular Complications In Type 2 Diabetes. Diabetes,. 2020; 69 (1): 570–583. doi: 10.2337/db20-570-P

49. Schinzari F., Tesauro M., Bertoli A., Valentini A., Veneziani A., Campia U., Cardillo C. Calcification biomarkers and vascular dysfunction in obesity and type 2 diabetes: influence of oral hypoglycemic agents. Am. J. Physiol. Endocrinol. Metab., 2019; 317: 658–666. doi: 10.1152/ajpendo.00204.2019

50. Torres P.A. Origin of the mediacalcosis in kidney failure. J. Mal. Vasc., 2009; 34 (3): 204–210. doi: 10.1016/j.jmv.2009.02.002

51. Huang Q.X., Li J.B., Huang N., Huang X., Li Y., Huang F. Elevated Osteoprotegerin Concentration Predicts Increased Risk of Cardiovascular Mortality in Patients with Chronic Kidney Disease: A Systematic Review and MetaAnalysis. Kidney Blood Press Res., 2020; 45: 565–575. doi: 10.1159/000508978

52. Dıaz M.A., Prado M.D.C., Mora C., Romero R., Cordova R., Qureshi A.R., Paniagua R. Osteoprotegerin is better predictor for cardiovascular and allcause mortality than vascular calcification in patients on peritoneal dialysis. Nephrology Dialysis Transplantation, 2019; 34 (1): 618–626. doi: 10.1093/ndt/gfz106.FP618

53. Bozic M., Méndez-Barbero N., Gutiérrez-Muсoz C., Betriu A., Egido J., Fernández E., Martín-Ventura J.L., Valdivielso J.M., Blanco-Colio L.M. Combination of biomarkers of vascular calcification and sTWEAK to predict cardiovascular events in chronic kidney disease. Atherosclerosis, 2018; 270: 13–20. doi: 10.1016/j.atherosclerosis.2018.01.011

54. Salam S., Gallagher O., Gossiel F., Paggiosi M., Eastell R., Khwaja A. Vascular calcification relationship to vascular biomarkers and bone metabolism in advanced chronic kidney disease. Bone, 2021; 143: 115699. doi: 10.1016/j.bone.2020.115699

55. Batko K., Krzanowski M., Gajda M., Dumnicka P., Fedak D., Woziwodzka K., Sułowicz W., Kuźniewski M., Litwin J.A., Krzanowska K. Endothelial injury is closely related to osteopontin and TNF receptor-mediated inflammation in end-stage renal disease. Cytokine, 2019; 121: 154729. doi: 10.1016/j.cyto.2019.05.016

56. Fitzpatrick J., Kim E.D., Sozio S.M., Jaar B.G., Estrella M.M., Monroy-Trujillo J.M., Parekh R.S. Calcification Biomarkers, Subclinical Vascular Disease, and Mortality Among Multiethnic Dialysis Patients. Kidney Int. Rep., 2020; 5 (10): 1729–1737. doi: 10.1016/j.ekir.2020.07.033

57. Thanakun S., Na Mahasarakham C.P., Pornprasertsuk- Damrongsri S., Izumi Y. Correlation of plasma osteopontin and osteocalcin with lower renal function in dental patients with carotid artery calcification and tooth loss. J. Oral Biosciences, 2019; 61 (3): 183–189. doi: 10.1016/j.job.2019.06.004

58. Keryakos H.K.H., Okaily N.I., Boulis M.A.Y., Salama A.M.S. Osteocalcin and vascular calcification in hemodialysis patients: an observational cohort study. Int. Urol. Nephrol., 2021; 53 (5): 1015–1023. doi: 10.1007/s11255-020-02753-y

59. Luna-Luna M., Criales-Vera S., Medina-Leyte D., Díaz-Zamudio M., Flores-Zapata A., Cruz-Robles D., Lуpez-Meneses M., Olvera-Cruz S., Ramírez-Marroquín S., Flores-Castillo C., Fragoso J.M., CarreуnTorres E., Vargas-Barrуn J., Vargas-Alarcуn G., Pé-rez-Méndez O. Bone Morphogenetic Protein-2 and Osteopontin Gene Expression in Epicardial Adipose Tissue from Patients with Coronary Artery Disease Is Associated with the Presence of Calcified Atherosclerotic Plaques. Diabetes Metab. Syndr. Obes., 2020; 13: 1943–1951. doi: 10.2147/DMSO.S253632

60. Luna-Luna M., Cruz-Robles D., Ávila-Vanzzini N., Herrera- Alarcуn V., Martínez-Reding J., Criales-Vera S., Sandoval-Zárate J., Vargas-Barrуn J., MartínezSánchez C., Tovar-Palacio A.R., Fragoso J.M., Carreуn-Torres E., Vargas-Alarcуn G., Pérez- Méndez O. Differential expression of osteopontin, and osteoprotegerin mRNA in epicardial adipose tissue between patients with severe coronary artery disease and aortic valvular stenosis: association with HDL subclasses. Lipids. Health. Dis., 2017; 16 (1): 156. doi: 10.1186/s12944-017-0550-2


Рецензия

Для цитирования:


Маслацов Н.А., Рагино Ю.И. Биомаркеры кальцификации, их связь с заболеваниями сердечно-сосудистой системы и значение в клинической практике. Атеросклероз. 2021;17(2):72-82. https://doi.org/10.52727/2078-256X-2021-17-2-72-82

For citation:


Maslatsov N.A., Ragino Yu.I. Biomarkers of vascular calcification: their relationship with diseases of the cardiovascular system and their importance in clinical practice. Ateroscleroz. 2021;17(2):72-82. (In Russ.) https://doi.org/10.52727/2078-256X-2021-17-2-72-82

Просмотров: 370


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)