Preview

Ateroscleroz

Advanced search

Genes of APOA5 and APOH apoliproteins as regulators of lipoprotein metabolism

https://doi.org/10.15372/ATER20200307

Abstract

Atherosclerosis is main cause of cardiovascular disease leading to disability and death worldwide. Many factors can affect atherogenesis, including hypertension, smoking, diabetes mellitus and inflammatory processes. It is known that disorders of cholesterol and triglycerides It is known, that violation in cholesterol and triglyceride metabolism caused by substitutions in the structure of apolipoproteins are associated with a predisposition to hyperlipidemia and atherosclerosis. Despite the increased interest in the atherogenesis mechanisms, many participants in this process are not fully understood. In this review, we examined the structure and functions of two proteins – apolipoprotein A5 and apolipoprotein H in connection with their association with impaired lipid metabolism.

About the Authors

N. S. Shirokova
Novosibirsk State University
Russian Federation

630090, Novosibirsk, Pirogov str., 1



S. V. Mikhailova
Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

630090, Novosibirsk, Academician Lavrentiev av., 10



D. E. Ivanoshchuk
Federal Research Center Institute of Cytology and Genetics of SB RAS; Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

630090, Novosibirsk, Academician Lavrentiev av., 10,

630089, Novosibirsk, Boris Bogatkov str., 175/1



E. V. Shachtshneider
Federal Research Center Institute of Cytology and Genetics of SB RAS; Research Institute of Internal and Preventive Medicine – Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS
Russian Federation

630090, Novosibirsk, Academician Lavrentiev av., 10,

630089, Novosibirsk, Boris Bogatkov str., 175/1



References

1. Norata G.D., Tsimikas S., Pirillo A., Catapano A.L. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol Sci. 2015; 36 (10): 675–687.

2. van Dijk K.W., Rensen P.C., Voshol P.J., Havekes L.M. The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr. Opin. Lipidol. 2004; 15 (3): 239–246.

3. Pennacchio L.A., Olivier M., Hubacek J.A., Cohen J.C., Cox D.R., Fruchart J.C., Krauss R.M., Rubin E.M. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 2001; 294 (5540): 169–173.

4. Su X., Kong Y., Peng D.Q. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis. 2018; 17 (174): 1–12.

5. Pennacchio L.A., Olivier M., Hubacek J.A., Krauss R.M., Rubin E.M., Cohen J.C. Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum. Mol. Genet. 2002; 11 (24): 3031–3038.

6. Shu X., Nelbach L., Ryan R.O., Forte T.M. Apolipoprotein A-V associates with intrahepatic lipid droplets and influences triglyceride accumulation. Biochim. Biophys. Acta. 2010; 1801 (5): 605–608.

7. O'Brien P.J., Alborn W.E., Sloan J.H., Ulmer M., Boodhoo A., Knierman M.D., Schultze A.E., Konrad R.J. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin. Chem. 2005; 51 (2): 351–359.

8. Alborn W. E., Johnson M.V., Prince M.J., Konrad R.J. Definitive N-terminal protein sequence and further characterization of the novel apolipoprotein A5 in human serum. Clin. Chem. 2006; 52 (3): 514–517.

9. Guardiola M., Alvaro A., Vallvé J.C., Rosales R., Solà R., Girona J., Serra N., Duran P., Esteve E., Masana L., Ribalta J. APOA5 gene expression in the human intestinal tissue and its response to in vitro exposure to fatty acid and fibrate. Nutr. Metab. Cardiovasc. Dis. 2012; 22 (9): 756–762.

10. van der Vliet H.N., Schaap F.G., Levels J.H., Ottenhoff R., Looije N., Wesseling J.G., Groen A.K., Chamuleau R.A. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem. Biophys. Res. Commun. 2002; 295 (5): 1156–1159.

11. Schaap F.G., Rensen P.C., Voshol P.J., Vrins C., van der Vliet H.N., Chamuleau R.A., Havekes L.M., Groen A.K., van Dijk K.W. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J. Biol. Chem. 2004; 279 (27): 27941–27947.

12. Guardiola M., Ribalta J. Update on APOA5 genetics: toward a better understanding of its physiological impact. Curr. Atheroscler. Rep. 2017; 19 (7): 30.

13. The Human Gene Mutation Database. http://www.hgmd.cf.ac.uk/ac/index.php

14. Yuan G., Al-Shali K.Z., Hegele R.A. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ. 2007; 176 (8): 1113–1120.

15. Oliva C.P., Pisciotta L., Volti G.L., Sambataro M.P., Cantafora A., Bellocchio A., Catapano A., Tarugi P., Bertolini S., Calandra S. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2005; 25 (2): 411–417.

16. Dussaillant C., Serrano V., Maiz A., Eyheramendy S., Cataldo L.R., Chavez M., Smalley S.V., Fuentes M., Rigotti A., Rubio L., Lagos C.F., Martinez J.A., Santos J.L. APOA5 Q97X mutation identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family. BMC Med. Genet. 2012; 13: 106.

17. Priore O.C., Carubbi F., Schaap F.G., Bertolini S., Calandra S. Hypertriglyceridaemia and low plasma HDL in a patient with apolipoprotein A-V deficiency due to a novel mutation in the APOA5 gene. J. Intern. Med. 2008; 263: 450–458.

18. Melegh B.I., Duga B., Sümegi K., Kisfali P., Maász A., Komlósi K., Hadzsiev K., Komoly S., Kosztolányi G., Melegh B. Mutations of the apolipoprotein A5 gene with inherited hypertriglyceridaemia: Review of the current literature. Curr. Med. Chem. 2012; 19 (36): 6163–6170.

19. Marcais C., Verges B., Charriere S., Pruneta V., Merlin M., Billon S., Perrot L., Drai J., Sassolas A., Pennacchio L.A., Fruchart-Najib J., Fruchart J.C., Durlach V., Moulin P. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J. Clin. Invest. 2005; 115 (10): 2862–2869.

20. Kisfali P., Mohás M., Maász A., Polgár N., Hadarits F., Markó L., Brasnyó P., Horvatovich K., Oroszlán T., Bagosi Z., Bujtor Z., Gasztonyi B., Rinfel J., Wittmann I., Melegh B. Haplotype analysis of the apolipoprotein A5 gene in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2010; 20 (7): 505–511.

21. Horvatovich K., Bokor S., Baráth A., Maász A., Kisfali P., Járomi L., Polgár N., Tóth D., Répásy J., Endreffy E., Molnár D., Melegh B. Haplotype analysis of the apolipoprotein A5 gene in obese pediatric patients. Int. J. Pediatr. Obes. 2011; 6 (2-2): e318–e325.

22. Chandak G.R., Ward K.J., Yajnik C.S., Pandit A.N., Bavdekar A., Joglekar C.V., Fall C.H., Mohankrishna P., Wilkin T.J., Metcalf B.S., Weedon M.N., Frayling T.M., Hattersley A.T. Triglyceride associated polymorphisms of the APOA5 gene have very different allele frequencies in Pune, India compared to Europeans. BMC Med. Genet. 2006; 7: 76.

23. Havasi V., Szolnoki Z., Talián G., Bene J., Komlósi K., Maász A., Somogyvári F., Kondacs, A., Szabó M., Fodor L., Bodor A., Melegh B. Apolipoprotein A5 gene promoter region T-1131C polymorphism associates with elevated circulating triglyceride levels and confers susceptibility for development of ischemic stroke. J. Mol. Neurosci. 2006; 29 (2): 177–183.

24. Maasz A., Kisfali P., Jaromi L., Horvatovich K., Szolnoki Z., Csongei V., Safrany E., Sipeky C., Hadarits F., Melegh B. Apolipoprotein A5 gene IVS3+G476A allelic variant confers susceptibility for development of ischemic stroke. Circ. J. 2008; 72 (7): 1065–1070.

25. Caussy C., Charrière S., Marçais C., Di Filippo M., Sassolas A., Delay M., Euthine V., Jalabert A., Lefai E., Rome S., Moulin P. An APOA5 3' НТО variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site. Am. J. Hum. Genet. 2014; 94 (1): 129–134.

26. Lai C.Q., Tai E.S., Tan C.E., Cutter J., Chew S.K., Zhu Y.P., Adiconis X., Ordovas J.M. The APOA5 locus is a strong determinant of plasma triglyceride concentrations across ethnic groups in Singapore. J. Lipid Res. 2003; 44 (12): 2365–2373.

27. Maász A., Kisfali P., Szolnoki Z., Hadarits F., Melegh B. Apolipoprotein A5 gene C56G variant confers risk for the development of large-vessel associated ischemic stroke. J. Neurol. 2008; 255 (5): 649–654.

28. Hubacek J., Škodová Z., Adámková V., Lánská V., Poledne R. The influence of APOAV polymorphisms (T-1131>C and S19>W) on plasma triglyceride levels and risk of myocardial infarction. Clin. Genet. 2004; 65 (2): 126–130.

29. Oliva I., Guardiola M., Vallvé J.C., Ibarretxe D., Plana N., Masana L., Monk D., Ribalta J. APOA5 genetic and epigenetic variability jointly regulate circulating triacylglycerol levels. Clin. Sci. (Lond). 2016; 130 (22): 2053–2059.

30. Lee N.S., Brewer H.B. Jr, Osborne J.C. Jr. beta 2-Glycoprotein I. Molecular properties of an unusual apolipoprotein, apolipoprotein H. J. Biol. Chem. 1983; 258 (8): 4765–4770.

31. Ho Y.C., Ahuja K.D.K., Körner H., Adams M.J. β2GP1, anti-β2GP1 antibodies and platelets: key players in the antiphospholipid syndrome. Antibodies (Basel). 2016; 5 (2): 12.

32. Andreoli L., Chighizola C.B., Banzato A., Pons-Estel G.J., Ramire de Jesus G., Erkan D. Estimated frequency of antiphospholipid antibodies in patients with pregnancy morbidity, stroke, myocardial infarction, and deep vein thrombosis: a critical review of the literature. Arthritis. Care Res. (Hoboken). 2013; 65 (11): 1869–1873.

33. Hoshino M., Hagihara Y., Nishii I., Yamazaki T., Kato H., Goto Y. Identification of the phospholipid-binding site of human beta(2)-glycoprotein I domain V by heteronuclear magnetic resonance. J. Mol. Biol. 2000; 304 (5): 927–939.

34. de Groot P.G., Meijers J.C. β(2)-Glycoprotein I: evolution, structure and function. J. Thromb. Haemost. 2011; 9 (7): 1275–1284.

35. Balasubramanian K., Maiti S.N., Schroit A.J. Recruitment of beta-2-glycoprotein 1 to cell surfaces in extrinsic and intrinsic apoptosis. Apoptosis. 2005; 10 (2): 439–446.

36. Maiti S.N., Balasubramanian K., Ramoth J.A., Schroit A.J. Beta-2-glycoprotein 1-dependent macrophage uptake of apoptotic cells. Binding to lipoprotein receptor-related protein receptor family members. J. Biol. Chem. 2008; 283 (7): 3761–3766.

37. Gropp K., Weber N., Reuter M., Micklisch S., Kopka I., Hallstrom T. β2-glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator. Blood. 2011; 118 (10): 2774– 2783.

38. Horbach D.A., van Oort E., Lisman T., Meijers J.C., Derksen R.H., de Groot P.G. Beta2-glycoprotein I is proteolytically cleaved in vivo upon activation of fibrinolysis. Thromb. Haemost. 1999; 81 (1): 87–95.

39. Ağar C., de Groot P.G., Levels J.H., Marquart J.A., Meijers J.C. Beta2-glycoprotein I is incorrectly named apolipoprotein H. J. Thromb. Haemost. 2009; 7 (1): 235–236.

40. Zhang Y.G., Song Y., Guo X.L., Miao R.-Y., Fu Y.-Q., Miao C.-F., Zhang C. Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis. Cell Cycle. 2019; 18 (20): 2674–2684.

41. Matsuura E., Atzeni F., Sarzi-Puttini P., Turiel M., Lopez L.R., Nurmohamed M.T. Is atherosclerosis an autoimmune disease? BMC Med. 2014; 12: 47.

42. Zhang X., Xie Y., Zhou H., Xu Y., Liu J., Xie H., Yan J. Involvement of TLR4 in oxidized LDL/β2GPI/ anti-β2GPI-induced transformation of macrophages to foam cells. J. Atheroscler. Thromb. 2014; 21 (11): 1140–1151.

43. Lin K.Y., Pan J.P., Yang D.L., Huang K.T., Chang M.S., Ding P.Y., Chiang A.N. Evidence for inhibition of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (β2-glycoprotein I). Life Sci. 2001; 69 (6): 707–719.

44. Kobayashi K., Kishi M., Atsumi T., Bertolaccini M.L., Makino H., Sakairi N., Yamamoto I., Yasuda T., Khamashta M.A., Hughes G.R., Koike T., Voelker D.R., Matsuura E. Circulating oxidized LDL forms complexes with β2-glycoprotein I. J. Lipid Res. 2003; 44 (4): 716–726.

45. Moestrup S.K., Schousboe I., Jacobsen C., Leheste J.R., Christensen E.I., Willnow T.E. beta2-glycoprotein-I (apolipoprotein H) and beta2-glycoprotein-I-phospholipid complex harbor a recognition site for the endocytic receptor megalin. J. Clin. Invest. 1998; 102 (5): 902–909.

46. Lin F., Murphy R., White B., Kelly J., Feighery C., Doyle R., Pittock S., Moroney J., Smith O., Livingstone W., Keenan C., Jackson J. Circulating levels of β2-glycoprotein I in thrombotic disorders and in inflammation. Lupus. 2006; 15 (2): 87–93.

47. Mather K.A., Thalamuthu A., Oldmeadow C., Song F., Armstrong N.J., Poljak A. Holliday E.G., McEvoy M., Kwok J.B., Assareh A.A., Reppermund S., Kochan N.A., Lee T., Ames D., Wright M.J., Trollor J.N., Schofield P.W., Brodaty H., Scott R.J., Schofield P.R., Attia J.R., Sachdev P.S. Genome-wide significant results identified for plasma apolipoprotein H levels in middle-aged and older adults. Sci. Rep. 2016; 6: 23675.

48. Sheng Y., Reddel S.W., Herzog H., Wang Y.X., Brighton T., France M.P., Krilis S.A. Impaired in vitro thrombin generation in β2-glycoprotein I null mice. Arthritis Res. 2001; 3 (Suppl A): P079.

49. Girardi G., Redecha P., Salmon J.E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat. Med. 2004; 10 (11): 1222–1226.

50. Hoshino M., Hagihara Y., Nishii I., Yamazaki T., Kato H., Goto Y. Identification of the phospholipidbinding site of human beta(2)-glycoprotein I domain V by heteronuclear magnetic resonance. J. Mol. Biol. 2000; 304 (5): 927–939.

51. Suresh S., Demirci F.Y., Lefterov I., Kammerer C.M., Ramsey-Goldman R., Manzi S., Kamboh M.I. Functional and genetic characterization of the promoter region of apolipoprotein H (beta2-glycoprotein I). FEBS J. 2010; 277 (4): 951–963.

52. Sodin-Semrl S., Rozman B. Beta2-glycoprotein I and its clinical significance: from gene sequence to protein levels. Autoimmun. Rev. 2007; 6 (8): 547–552.

53. Steinkasserer A., Estaller C., Weiss E.H., Sim R.B., Day A.J. Complete nucleotide and deduced amino acid sequence of human beta 2-glycoprotein I. Biochem. J. 1991; 277 (Pt 2): 387–391.

54. Shi T., Giannakopoulos B., Iverson G.M., Linnik M.D., Krilis S.A. Domain V of beta2-glycoprotein I binds factor XI/XIa and is cleaved at Lys317-Thr318. J. Biol. Chem. 2005; 280 (2): 907–912.

55. Kristensen T., Schousboe I., Boel E., Mulvihill E.M., Hansen R.R., Moller K.B. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA. FEBS Lett. 1991; 289 (2): 183–186.

56. Bouma B., de Groot P.G., van den Elsen J.M., Ravelli R.B., Schouten A., Simmelink M.J., Derksen R.H., Kroon J., Gros P. Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J. 1999; 18 (19): 5166–5174.

57. Agar C., van Os G.M., Mörgelin M., Sprenger R.R., Marquart J.A., Urbanus R.T., Derksen R.H.W.M., Meijers J.C.M., de Groot P.G. Beta2-glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood. 2010; 116 (8): 1336–1343.

58. Andreoli L., Fredi M., Nalli C., Franceschini F., Meroni P.L., Tincani A. Antiphospholipid antibodies mediate autoimmunity against dying cells. Autoimmunity. 2013; 46 (5): 302–306.

59. McDonnell T., Wincup C., Buchholz I., Pericleous C., Giles I., V Ripoll, Cohen H., Delcea M., Rahmana A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020; 39: 100610.

60. Mehdi H., Manzi S., Desai P., Chen Q., Nestlerode C., Bontempo F., Strom S.C., Zarnegar R., Kamboh M.I. A functional polymorphism at the transcriptional initiation site in beta2-glycoprotein I (apolipoprotein H) associated with reduced gene expression and lower plasma levels of beta2-glycoprotein I. Eur. J. Biochem. 2003; 270 (2): 230–238.

61. Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013; 45 (11): 1274–1283.

62. de Laat B., van Berkel M., Urbanus R.T., Siregar B., de Groot P.G., Gebbink M.F., Maas C. Immune responses against domain I of β2-glycoprotein I are driven by conformational changes: Domain I of β2- glycoprotein I harbors a cryptic immunogenic epitope. Arthritis Rheum. 2011; 63 (12): 3960–3968.

63. Sanghera D.K., Wagenknecht D.R., McIntyre J.A., Kamboh M.I. Identification of Structural Mutations in the Fifth Domain of Apolipoprotein H (2-Glycoprotein I) Which Affect Phospholipid Binding. Hum. Mol. Genet. 1997; 6 (2): 311–316.

64. Kamboh M.I., Mehdi H. Genetics of apolipoprotein H (beta2-glycoprotein I) and anionic phospholipid binding. Lupus. 1998; 7 (Suppl. 2): S10–S13.

65. Asselbergs F.W., Guo Y., van Iperen E.P., Sivapalaratnam S., Tragante V., Lanktree M.B., Lange L.A., Almoguera, B., Appelman Y.E., Barnard J., Baumert J., Beitelshees A.L., Bhangale T.R., Chen Y.D., Gaunt T.R., Gong Y., Hopewel J.C., Johnson T., Kleber M.E., Langaee T.Y., Dreno F. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am. J. Hum. Genet. 2012; 91 (5): 823–838.

66. Leduc M.S., Shimmin L.C., Klos K.L., Hanis C., Boerwinkle E., Hixson J.E. Comprehensive evaluation of apolipoprotein H gene (APOH) variation identifies novel associations with measures of lipid metabolism in GENOA. J. Lipid. Res. 2008; 49 (12): 2648–2656.

67. Guo T., Yin R.X., Li H., Wang Y.M., Wu J.Z., Yang D.Z. Association of the Trp316Ser variant (rs1801690) near the apolipoprotein H (β2-glycoprotein-I) gene and serum lipid levels. Int. J. Clin. Exp. Pathol. 2015; 8 (6): 7291–7304.

68. Iwaniec T., Kaczor M.P., Celińska-Löwenhoff M., Polański S., Musiał J. Clinical significance of anti-domain 1 β2-glycoprotein I antibodies in antiphospholipid syndrome. Thromb. Research. 2017; 153: 90–94.

69. Sepehrnia B., Kamboh M.I., Adams-Campbell L.L., Bunker C.H., Nwankwo M., Majumder P.P., Ferrell R.E. Genetic studies of human apolipoproteins. X. The effect of the apolipoprotein E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. Am. J. Hum. Genet. 1989; 82 (2): 118–122.

70. Cassader M., Ruiu G., Gambino R., Guzzon F., Pagano A., Veglia F., Pagni R., Pagano G. Influence of apolipoprotein H polymorphism on levels of triglycerides. Atherosclerosis. 1994; 110 (1): 45–51.


Review

For citations:


Shirokova N.S., Mikhailova S.V., Ivanoshchuk D.E., Shachtshneider E.V. Genes of APOA5 and APOH apoliproteins as regulators of lipoprotein metabolism. Ateroscleroz. 2020;16(3):53-60. (In Russ.) https://doi.org/10.15372/ATER20200307

Views: 457


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)