Receptors and proteins binding high density lipoproteins
https://doi.org/10.15372/ATER20200306
Abstract
Interest in the study of high density lipoproteins (HDL) is associated with the functional activity of these particles, which, first of all, determines their antiatherogenic properties. The main biological role of HDL is the «reverse» transport of cholesterol from peripheral tissues to the liver. However, it must be borne in mind that the mechanism of antiatherogenic action of HDL is not limited only to the «reverse» transport of cholesterol from peripheral tissues to the liver, it is determined by many other factors, each of which is important not only in the context of protecting the body from atherosclerosis, but also in the protective role HDL in a wider aspect. It turned out that HDL has an important antiinflammatory effect, have antioxidant and antiapoptotic properties, regulate vascular tone and anticoagulant activity, and act as antimicrobial and antiviral agents. According to modern concepts, in connection with the development of proteomics, data have appeared that indicate the participation in these processes of the protein components of the plasma membrane of cells and specific receptor proteins embedded in it. The purpose of this review is to summarize the existing body of knowledge about events and molecules related to the regulation of HDL metabolism with the participation of the scavenger receptor (SR-BI), ATP-linked cassette transporters ABCA1 and ABCG1, ecto-F1-ATPase, and cubiline-megaline receptor.
About the Authors
L. M. PolyakovRussian Federation
630117, Novosibirsk, Timakov str., 2
R. A. Knyazev
Russian Federation
630117, Novosibirsk, Timakov str., 2
N. V. Trifonova
Russian Federation
630117, Novosibirsk, Timakov str., 2
M. V. Kotova
Russian Federation
630117, Novosibirsk, Timakov str., 2
E. I. Solovyova
Russian Federation
630117, Novosibirsk, Timakov str., 2
A. V. Ryabchenko
Russian Federation
630117, Novosibirsk, Timakov str., 2
References
1. Liu X., Suo R., Xiong S.L., Zhang Q.H., Yi G.H. HDL drug carriers for targeted therapy. Clin. Chim. Acta. 2013; 415: 94–100.
2. Fielding C.J. High-density lipoproteins: from basic biology to clinical aspects. John Wiley & Sons, 2008: 111–142.
3. Röhrl C., Stangl H. HDL endocytosis and resecretion. Biochim. Biophys. Acta. 2013; 1831 (11): 1626–1633.
4. Acton S., Rigotti A., Landschulz K.T., Xu S., Hobbs H.H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996; 271 (5248): 518–520.
5. Leiva A., Verdejo H., Benítez M.L., Martínez A., Busso D., Rigotti A. Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis. 2011; 217 (2): 299–307.
6. Куликов В.А. Обратный транспорт холестерина из макрофагов. Вестн. ВГМУ. 2011; 10 (1): 33.
7. Ma Y., Ashraf M.Z., Podrez E.A. Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood. 2010; 116 (11): 1932–1941.
8. Chadwick A.C., Jensen D.R., Peterson F.C., Volkman B.F., Sahoo D. Expression, purification and reconstitution of the C-terminal transmembrane domain of scavenger receptor BI into detergent micelles for NMR analysis. Protein Expr. Purif. 2015; 107: 35–42.
9. Plüddemann Chand H.S., Harris J.F., Mebratu Y., Chen Y., Wright P.S., Randell S.H., Tesfaigzi Y. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells. J. Immunol. 2012; 188 (9): 4581–4589.
10. Ganesan L.P., Mates J.M., Cheplowitz A.M., Avila C.L., Zimmerer J.M., Yao Z., Maiseyeu A., Rajaram M.V., John M., Robinson J.M., Anderson C.L. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells. Sci. Rep. 2016; 2064 (6): 1–13.
11. Lorenzi I., Eckardstein A., Radosavljevic S., Rohrer L. Lipidation of apolipoprotein AI by ATP-binding cassette transporter (ABC) A1 generates an interaction partner for ABCG1 but not for scavenger receptor BI. Biochim. Biophys. Acta. 2008; 1781 (6): 306–313.
12. Mulya A., Lee J.Y., Gebre A.K., Boudyguina E.Y., Chung S.K., Smith T.L., Perry L., Colvin P.L., Jiang X., Parks J.S. Initial interaction of apoA-I with ABCA1 impacts in vivo metabolic fate of nascent HDL. J. Lipid Res. 2008; 49 (11): 2390–2401.
13. Kontush A., Chapman M.J. High-density lipoproteins: structure, metabolism, function and therapeutics. John Wiley & Sons, 2012: 605.
14. Hoekstra M., van Eck M. Mouse models of disturbed HDL metabolism. Handb. Exp. Pharmacol. 2015; 224: 301–336.
15. Lyu J., Imachi H., Fukunaga K., Yoshimoto, Zhang H., Murao K. Roles of lipoprotein receptors in the entry of hepatitis C virus. World J. Hepatol. 2015; 7 (24): 2535–2542.
16. Shen W.J., Hu J., Hu Z., Kraemer F.B., Azhar S. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Metabolism. 2014; 63 (7): 875–886.
17. Никифоров Н.Г., Грачев А.Н., Собенин И.А., Орехов A.Н., Yu G. Макрофаги и метаболизм липопротеидов в атросклеротическом поражении. Medline. ru. Рос. биомед. журн. 2012; 13 (3): 900–922.
18. Thanopoulou K., Fragkouli A., Stylianopoulou F., Georgopoulos S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc. Natl. Acad. Sci USA. 2010; 107 (48): 20816– 20821.
19. Zannis V., Kateifides A., Kardassis D., Zanni E., Fotakis P. Pleiotropic functions of HDL lead to protection from atherosclerosis and other diseases. INTECH Open Access Publisher, 2012: 172–198.
20. Hoekstra M., van Berkel T.J. Functionality of highdensity lipoprotein as antiatherosclerotic therapeutic target. Arterioscler. Thromb. Vasc. Biol. 2016; 36 (11): 87–94.
21. Yesilaltay A., Morales M.G., Amigo L., Zanlungo S., Rigotti A., Karackattu S.L., Donahee M.H., Kozarsky K.F., Krieger M. Effects of hepatic expression of the high-density lipoprotein receptor SR-BI on lipoprotein metabolism and female fertility. Endocrinology. 2006; 147 (4): 1577–1588.
22. Tsompanidi E.M., Brinkmeier M.S., Fotiadou E.H., Giakoumi S.M., Kypreos K.E. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis. 2010; 208 (1): 3–9.
23. Ji A., Meyer J.M., Cai L., Akinmusire A., de Beer M.C., Webb N.R., Van der Westhuyzen D.R. Scavenger receptor SR-BI in macrophage lipid metabolism. Atherosclerosis. 2011; 217 (1): 106–112.
24. Trigatti B.J., Krieger M., Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2003; 23 (10): 1732–1738.
25. Yang X.P., Amar M.J., Vaisman B., Bocharov A.V., Vishnyakova T.G., Freeman L.A., Kurlander R.J., Patterson A.M., Becker L.C., Remaley A.T. Scavenger receptor-BI is a receptor for lipoprotein. J. Lipid. Res. 2013; 54 (9): 2450–2457.
26. Rigotti, B. Trigatti, Babit J., Penman M., Xu S., Krieger M. Scavenger receptor BI a cell surface receptor for high density lipoprotein. Curr. Opin. Lipidol. 1997; 8 (3): 181–188.
27. Trigatti B., Covey S., Rizvi A. Scavenger receptor class B type I in high-density lipoprotein metabolism, atherosclerosis and heart disease: lessons from gene-targeted mice. Biochem. Soc. Trans. 2004; 32 (1): 116–120.
28. Li J., Wang J., Li M., Yin L., Li X., Zhang T. Upregulated expression of scavenger receptor class B type 1 (SR-B1) is associated with malignant behaviors and poor prognosis of breast cancer. Pathol. Res. Pract. 2016; 212 (6): 555–559.
29. Поляков Л.М., Панин Л.Е. Липопротеины высокой плотности и аполипопротеин А-I: регуляторная роль и новые терапевтические стратегии лечения атеросклероза. Атеросклероз. 2013; 9 (1): 42–53.
30. Takata K., Horiuchi S., Rahim A., Morino Y. Receptor-mediated internalization of high density lipoprotein by rat sinusoidal liver cells: identification of a nonlysosomal endocytic pathway by fluorescencelabeled ligand. J. Lipid Res. 1988; 29 (9): 11–26.
31. Fluiter K., van Berkel T. Scavenger receptor B1 (SR-B1) substrates inhibit the selective uptake of high-densitylipoprotein cholesteryl esters by rat parenchymal liver cells. Biochem. J. 1997; 326 (2): 515–519.
32. Hoekstra M., van Berkel T., van Eck M. Scavenger receptor BI: A multi-purpose player in cholesterol and steroid metabolism. World J. Gastroenterol. 2010; 16 (47): 5916–5924.
33. Kawano K., Qin S., Vieu C., Collet X., Jiang X.C. Role of hepatic lipase and scavenger receptor BI in clearing phospholipid/free cholesterol-rich lipoproteins in PLTP-deficient mice. Biochim. Biophys. Acta. 2002; 1583 (2): 133–140.
34. Martin G., Pilon A., Albert C., Collet X., Jiang X.C. Comparison of expression and regulation of the highdensity lipoprotein receptor SR-BI and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells. Eur. J. Biochem. 1999; 261 (2): 481–491.
35. Rigotti A., Edelman E.R., Seifert P., Iqbal S.N., DeMattos R.B., Temel R.E., Krieger M., Williams D.L. Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J. Biol. Chem. 1996; 271 (52): 33545–33549.
36. Mavridou S., Venihaki M., Rassouli O., Tsatsanis C., Kardassis D. Feedback inhibition of human scavenger receptor class B type I gene expression by glucocorticoid in adrenal and ovarian cells. Endocrinology. 2010; 151: 3214–3224.
37. Fluiter K., van der Westhuijzen D.R., van Berkel T.J. In vivo regulation of scavenger receptor BI and the selective uptake of high density lipoprotein cholesteryl esters in rat liver parenchymal and Kupffer cells. J. Biol. Chem. 1998; 273: 8434–8438.
38. Kellner-Weibel G., de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr. Atheroscler. Rep. 2011; 13 (3): 233–241.
39. Chen W., Silver D.L., Smith J.D., Tall A.R. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. J. Biol. Chem. 2000; 275 (40): 30794–30800.
40. Wang X., Collins H.L., Ranalletta M., Fuki I.V., Billheimer J.T., Rothblat G.H., Tall A.R., Rader D.J. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 2007; 117 (8): 2216–2224.
41. Fenske S.A., Yesilaltay A., Pal R., Daniels K.C. Barker C., Quiñones V., Rigotti A., Krieger M., Kocher O. Normal hepatic cell surface localization of the high density lipoprotein receptor, scavenger receptor class B, type I, depends on all four PDZ domains of PDZK1. J. Biol. Chem. 2009; 284 (9): 5797–5806.
42. Kocher O., Yesilaltay A., Shen C.H., Zhang S., Daniels K., Pal R., Chen J., Krieger M. Influence of PDZK1 on lipoprotein metabolism and atherosclerosis. Biochim. Biophys. Acta. 2008; 1782 (5): 310–316.
43. Yesilaltay A., Daniels K., Pal R., Krieger M., Kocher O. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice. PloS One. 2009; 4 (12): e8103.
44. Martinez L.O., Perret B., Barbaras R., Tercé F., Collet X. Hepatic and renal HDL receptors. In: HighDensity Lipoproteins: From Basic Biology to Clinical Aspects, Weinheim: Wiley, 2007: 307–338.
45. Martinez L.O., Najib S., Perret B., Cabou C., Lichtenstein L. Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis. 2015; 238 (1): 89–100.
46. Genoux A., Ruidavets J.B., Ferrieres J., Combes G., Lichtenstein L., Pons V., Laffargue M., Taraszkiewicz D., Carrie D., Elbaz M., Perret B., Martinez L.O. Serum IF1 concentration is independently associated to HDL levels and to coronary heart disease: the GENES study. J. Lipid. Res. 2013; 54 (9): 2550–2558.
47. Fabre A.C., Vantourout P., Champagne E., Tercé F., Rolland C., Perret B., Collet X., Barbaras R., Martinez L.O. Cell surface adenylate kinase activity regulates the F1-ATPase/P2Y13-mediated HDL endocytosis pathway on human hepatocytes. Cell. Mol. Life Sci. 2006; 63 (23): 2829–2837.
48. Fabre A.C., Malaval C., Ben A.A., Verdier C., Pons V., Serhan N., Lichtenstein L., Combes G., Huby T., Briand F., Collet X., Nijstad N., Tietge U.J., Robaye B., Perret B., Boeynaems J.M., Martinez L.O. P2Y13 receptor is critical for reverse cholesterol transport. Hepatology. 2010; 52 (4): 1477–1483.
49. Amsellem S., Gburek J., Hamard G., Nielsen R., Willnow T.E., Devuyst O., Nexo E., Verroust P.J., Christensen E.I., Kozyraki R. Cubilin is essential for albumin reabsorption in the renal proximal tubule. J. Am. Soc. Nephrol. 2010; 21 (11): 1859–1867.
50. Gelineau-van Waes J., Maddox J.R., Smith L.M., van Waes M., Wilberding J., Eudy J.D., Bauer L.K., Finnell R.H. Microarray analysis of E9. 5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics. 2008; 9 (1): 1.
51. Christensen E.I., Birn H., Storm T., Weyer K., Nielsen R. Endocytic receptors in the renal proximal tubule. Physiology. 2012; 27 (4): 223–236.
52. Marzolo M.P., Farfán P. New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol. Res. 2011; 44 (1): 89–105.
53. Tauris J., Christensen E.I., Nykjær A., Jacobsen C., Petersen C.M., Ovesen T. Cubilin and megalin colocalize in the neonatal inner ear. Audiol. Neurootol. 2009; 14 (4): 267–278.
Review
For citations:
Polyakov L.M., Knyazev R.A., Trifonova N.V., Kotova M.V., Solovyova E.I., Ryabchenko A.V. Receptors and proteins binding high density lipoproteins. Ateroscleroz. 2020;16(3):45-52. (In Russ.) https://doi.org/10.15372/ATER20200306