Biochemical markers of atherosclerotic plaque calcification
https://doi.org/10.15372/ATER20190408
Abstract
The literature review highlights the results of foreign and Russian studies of recent years, devoted to the study of biochemical factors and potential biomarkers of calcification of the vascular wall, as well as atherosclerotic plaques of the coronary and carotid arteries. The results of the studies allow to clarify and to supplement the known mechanisms of calcification of the vascular wall. To date, the four most studied biomarkers of vascular calcification are most studied osteoprotegerin, osteopontin, osteonectin and osteocalcin.
About the Authors
N. A. MaslatsovRussian Federation
630089, Novosibirsk, Boris Bogatkov str., 175/1
Yu. I. Ragino
Russian Federation
630089, Novosibirsk, Boris Bogatkov str., 175/1
References
1. Gross M.L., Meyer H.P., Ziebart H. et al. Calcification of coronary intima and media: immunohistochemistry, backscatter imaging, and X-ray analysis in renal and nonrenal patients // Clin. J. Am. Soc. Nephrol. 2007. Vol. 2, N 1. P. 121–134.
2. Kurabayashi M. Bone and calcium update; diagnosis and therapy of bone metabolism disease update. Calcification of atherosclerotic plaques: mechanism and clinical significance // Clin. Calcium. 2011. Vol. 21, N 12. P. 43–50. doi: CliCa111217931800
3. Bäck M., Aranyi T., Cancela M.L. et al. Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet // Front. Cardiovasc. Med. 2019. Vol. 18, N 5. P. 196–201. doi: 10.3389/fcvm.2018.00196
4. Di Bartolo B.A., Cartland S.P., Harith H.H. et al. TRAIL-deficiency accelerates vascular calcification in atherosclerosis via modulation of RANKL // PLoS One. 2013. Vol. 8, N 9. P. e74211. doi: 10.1371/journal.pone.0074211
5. Ikeda K., Souma Y., Akakabe Y. et al. Macrophages play a unique role in the plaque calcification by enhancing the osteogenic signals exerted by vascular smooth muscle cells // Biochem. Biophys. Res. Commun. 2012. Vol. 425, N 1. P. 39–44. doi: 10.1016/j.bbrc.2012.07.045
6. Kurabayashi M. Vascular calcification pathological mechanism and clinical application role of vascular smooth muscle cells in vascular calcification // Clin. Calcium. 2015. Vol. 25, N 5. P. 661–669. doi: CliCa1505661669
7. Sugiyama T., Yamamoto E., Fracassi F. et al. Calcified plaques in patients with acute coronary syndromes // JACC Cardiovasc. Interv. 2019. Vol. 12, N 6. P. 531–540. doi: 10.1016/j.jcin.2018.12.013
8. Davaine J.M., Quillard T., Brion R. Osteoprotegerin, pericytes and bone-like vascular calcification are associated with carotid plaque stability // PLoS One. 2014. Vol. 9, N 9. ID e107642. doi: 10.1371/journal.pone.0107642
9. Allison M.A., Hsi S., Wassel C.L. et al. Calcified atherosclerosis in different vascular beds and the risk of mortality // Arterioscler. Thromb. Vasc. Biol. 2012. Vol. 32, N 1. P. 140–146. doi: 10.1161/ATVBAHA.111.235234
10. Pesaro A.E., Katz M., Liberman M. et al. Circulating osteogenic proteins are associated with coronary artery calcification and increase after myocardial infarction // PLoS One. 2018. Vol. 13, N 8. ID e0202738. doi: 10.1371/journal.pone.0202738
11. Quercioli A., Luciano Viviani G., Dallegri F., Mach F., Montecucco F. Receptor activator of nuclear factor kappa B ligand/osteoprotegerin pathway is a promising target to reduce atherosclerotic plaque calcification // Crit. Pathw. Cardiol. 2010. Vol. 9, N 4. P. 227–230. doi: 10.1097/HPC.0b013e318200ec27
12. Ostric M., Kukuljan M., Markić D. et al. Expression of bone-related proteins in vascular calcification and its serum correlations with coronary artery calcification score // J. Biol. Regul. Homeost. Agents. 2019. Vol. 33, N 1. P. 29–38.
13. Вербовой А.Ф., Цанава И.А., Митрошина Е.В., Шаронова Л.А. Остеопротегерин – новый маркер сердечно-сосудистых заболеваний // Терапевт. арх. 2017. Т. 89, № 4. С. 91–94. doi: 10.17116/terarkh201789491-94
14. Rattazzi M., Faggin E., Bertacco E. et al. RANKL expression is increased in circulating mononuclear cells of patients with calcific aortic stenosis // J. Cardiovasc. Transl. Res. 2018. Vol. 11, N 4. P. 329–338. doi: 10.1007/s12265-018-9804-2
15. Mohammadpour A.H., Shamsara J., Nazemi S. et al. Evaluation of RANKL/OPG serum concentration ratio as a new biomarker for coronary artery calcification: A pilot study // Thrombosis. 2012. Vol. 12. ID 306263. doi: 10.1155/2012/306263
16. Quercioli A., Montecucco F., Bertolotto M. et al. Coronary artery calcification and cardiovascular risk: the role of RANKL/OPG signalling // Eur. J. Clin. Invest. 2010. Vol. 40, N 7. P. 645–654. doi: 10.1111/j.13652362.2010.02308.x
17. Rochette L., Meloux A., Rigal E. et al. The role of osteoprotegerin in vascular calcification and bone metabolism: The basis for developing new therapeutics // Calcif. Tissue Int. 2019. Vol. 105, N 3. P. 239–251. doi: 10.1007/s00223-019-00573-6
18. Panizo S., Cardus A., Encinas M. et al. RANKL increases vascular smooth muscle cell calcification through a RANKLBMP4-dependent pathway // Circ. Res. 2009. Vol. 104, N 9. P. 1041–1048. doi: 10.1161/CIRCRESAHA.108.189001
19. Krzanowski M., Krzanowska K., Dumnicka P. et al. Elevated circulating osteoprotegerin levels in the plasma of hemodialyzed patients with severe artery calcification // Ther. Apher. Dial. 2018. Vol. 22, N 5. P. 519–529. doi: 10.1111/1744-9987.12681
20. Ahmed S., Sobh R. Predictive value of osteoprotegerin for early detection coronary artery calcification in type 2 diabetes mellitus patients in correlation with extent of calcification detected by multidetector computed tomography // Endocr. Metab. Immune Disord. Drug Targets. 2019. Vol. 11. P. 256–263. doi: 10.2174/1871530319666190211122858
21. Kwon A., Choi Y.S., Choi Y.W. et al. Serum osteoprotegerin is associated with calcified carotid plaque: a Strobe-Compliant Observational Study // Medicine. 2016. Vol. 95, N 15. ID e3381. doi: 10.1097/MD.0000000000003381
22. Perez de Ciriza C., Moreno M., Restituto P. et al. Circulating osteoprotegerin is increased in the metabolic syndrome and associates with subclinical atherosclerosis and coronary arterial calcification // Clin. Biochem. 2014. Vol. 47, N 18. P. 272–278. doi: 10.1016/j.clinbiochem.2014.09.004
23. Heymann M.F., Herisson F., Davaine J.M. et al. Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: comparison between carotid and femoral beds // Cytokine. 2012. Vol. 58, N 2. P. 300–306. doi: 10.1016/j.cyto.2012.02.004
24. Icer M.A., Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin // Clin. Biochem. 2018. Vol. 59. P. 17–24. doi: 10.1016/j.clinbiochem.2018.07.003
25. Lok Z.S.Y., Lyle A.N. Osteopontin in vascular disease // Arterioscler. Thromb. Vasc. Biol. 2019. Vol. 39, N 4. P. 613–622. doi: 10.1161/ATVBAHA.118.311577
26. Li X.Y., Chen R., Zhong W. et al. CD137 signaling promotes the formation of plaque calcification via inhibiting the fusion of autophagy and lysosomal in Apo E(-/-) mice // Zhonghua Xin Xue Guan Bing ZaZhi. 2017. Vol. 45, N 12. P. 1078–1085. doi: 10.3760/cma.j.issn.0253-3758.2017.12.013
27. Higgins C.L., Isbilir S., Basto P. et al. Distribution of alkaline phosphatase, osteopontin, RANK ligand and osteoprotegerin in calcifiedhuman carotid atheroma // Protein J. 2015. Vol. 34, N 5. P. 315–328. doi: 10.1007/s10930-015-9620-3
28. Polonskaya Y.V., Kashtanova E.V., Murashov I.S. et al. Associations of osteocalcin, osteoprotegerin, and calcitonin with inflammation biomarkers in atherosclerotic plaques of coronary arteries // Bull. Exp. Biol. Med. 2017. Vol. 162, N 6. P. 726–729. doi: 10.1007/s10517-017-3698-x
29. Ikeda T., Shirasawa T., Esaki Y. et al. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta // J. Clin. Invest. 1993. Vol. 92, N 6. P. 2814–2820.
30. Dolzhenko A., Richter T., Sagalovsky S. Vascular calcification, atherosclerosis and bone loss (osteoporosis): new pathophysiological mechanisms and future perspectives for pharmacological therapy // Альм. клин. мед. 2016. Т. 44, № 4. С. 513–534.
31. Zwakenberg S.R., van der Schouw Y.T., Schalkwijk C.G., Spijkerman A.M.W., Beulens J.W.J. Bone markers and cardiovascular risk in type 2 diabetes patients // Cardiovasc. Diabetol. 2018. Vol. 17, N 1. P. 45. doi: 10.1186/s12933-018-0691-2
32. Zhang M., Sara J.D., Wang F.L. et al. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients // Cardiovasc. Diabetol. 2015. Vol. 14. ID 64. doi: 10.1186/s12933-015-0214-3
33. Jeremias Z., Rat N., Benedek I. et al. High iliac calcium score is associated with increased severity and complexity of peripheral arterial disease and predicts global atherosclerotic burden // Vasa. 2018. Vol. 47, N 5. P. 377–386. doi: 10.1024/0301-1526/a000718
34. Rosset E.M., Bradshaw A.D. SPARC/osteonectin in mineralized tissue // Matrix Biol. 2016. Vol. 52-54. P. 78–87. doi: 10.1016/j.matbio.2016.02.001
35. Вербовой А.Ф., Митрошина Е.В., Пашенцева А.В. Взаимосвязь патогенеза атеросклероза и остеопороза // Ожирение и метаболизм. 2016. Т. 13, № 4. С. 8–14. doi: 10.14341/OMET201648-14
36. García-Gómez M.C., Vilahur G. Osteoporosis and vascular calcification: A shared scenario // Clin. Investig. Arterioscler. 2019. Vol. 6. ID S0214. doi: 10.1016/j.arteri.2019.03.008
37. Ciceri P., Elli F., Cappelletti L. Osteonectin (SPARC) expression in vascular calcification: in vitro and ex vivo studies // Calcif. Tissue Int. 2016. Vol. 99, N 5. P. 472–480.
38. Рагино Ю.И., Каштанова Е.В., Чернявский А.М., Волков А.М., Полонская Я.В., Иванова М.В. Связь остеонектина с некоторыми биомаркерами при стенозирующем атеросклерозе и кальцинозе коронарных артерий // Рос. кардиол. журн. 2010. № 4. С. 20–24.
39. Рагино Ю.И., Каштанова Е.В., Чернявский А.М., Полонская Я.В., Воевода М.И. Связь остеонектина с воспалительными, окислительными и липидными биомаркерами при коронарном атеросклерозе и его осложнениях // Атеросклероз и дислипидемии. Рос. кардиол. журн. 2014. № 4. С. 20–25.
40. дрыгина Л.Б., Корсакова Н.Е. Роль белков костного матрикса в регуляции сосудистой кальцификации // Клин.-лаб. консилиум. 2009. № 5. С. 14–20.
41. Evrard S., Delanaye P., Kamel S. et al. Vascular calcification: from pathophysiology to biomarkers // Clin. Chim. Acta. 2015. 438. P. 401–414. doi: 10.1016/j.cca.2014.08.034
42. Akers E.J., Nicholls S.J., Di Bartolo B. A plaque calcification // Arterioscler. Thromb. Vasc. Biol. 2019. Vol. 29. P. 119–125. doi: 10.1161/ATVBAHA.119.311574
43. Emoto M., Mori K., Lee E. et al. Fetuin-A and atherosclerotic calcified plaque in patients with type 2 diabetes mellitus // Metabolism. 2010. Vol. 59, N 6. P. 873–878. doi: 10.1016/j.metabol.2009.10.005
44. Seidu S., Kunutsor S.K., Khunti K. Association of circulating osteocalcin with cardiovascular disease and intermediate cardiovascular phenotypes: systematic review and meta-analysis // Scand. Cardiovasc. J. 2019. Vol. 22. P. 1–10. doi: 10.1080/14017431.2019.1655166
45. Zhang H., Wang L.J., Si D.L. et al. Correlation between osteocalcin-positive endothelial progenitor cells and spotty calcification in patients with coronary artery disease // Clin. Exp. Pharmacol. Physiol. 2015. Vol. 42, N 7. P. 734–739. doi: 10.1111/1440-1681.12366
46. Foresta C., Strapazzon G., De Toni L. et al. Platelets express and release osteocalcin and co-localize in human calcified atherosclerotic plaques // J. Thromb. Haemost. 2013. Vol. 11, N 2. P. 357–365. doi: 10.1111/jth.12088
Review
For citations:
Maslatsov N.A., Ragino Yu.I. Biochemical markers of atherosclerotic plaque calcification. Ateroscleroz. 2019;15(4):78-84. (In Russ.) https://doi.org/10.15372/ATER20190408