Preview

Атеросклероз

Расширенный поиск

СИСТЕМА ГЕМОСТАЗА И АТЕРОГЕНЕЗ

Аннотация

Концепция атеросклероза определяет ключевую роль воспаления в возникновении и прогрессировании атеросклероза. Система гемостаза является неотъемлемой частью воспалительной реакции. На всех этапах атерогенеза, начиная с ранних стадий, отмечается участие факторов гемостаза. Наибольший интерес в последние годы привлекают вопросы межклеточного взаимодействия между тромбоцитами и лейкоцитами. Сочетанная оценка лейкоцитарно-тромбоцитарных реакций отражает клиническую и лабораторную картину атеротромбоза при нестабильной стенкардии и инфаркте миокарда. Моноцитарно-тромбоцитарное взаимодействие играет существенную роль в развитии сердечной недостаточности, тромбоциты крови способны индуцировать апоптоз. Эффективность медикаментозной профилактики и терапии антитромботическими препаратами повысится при индивидуальном тестировании риска геморрагических осложнений. Изменение картины атеросклероза, наблюдаемое в последние годы, также требует введения новых подходов в профилактике атеросклероза, усиление защиты эндотелия. Данный обзор посвящен исследованиям, освещающим участие гемостаза в патогенезе атеросклероза.

Об авторах

А. А. Громов
Федеральное государственное бюджетное научное учреждение«Научно-исследовательский институт терапии и профилактической медицины»
Россия


М. В. Кручинина
Федеральное государственное бюджетное научное учреждение«Научно-исследовательский институт терапии и профилактической медицины»
Россия


Я. Ш. Шварц
Федеральное государственное бюджетное научное учреждение«Научно-исследовательский институт терапии и профилактической медицины»
Россия


В. Н. Кручинин
Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук
Россия


С. В. Рыхлицкий
Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук
Россия


Список литературы

1. Ross R. Atherosclerosis - an inflammatory disease // N. Engl. J. Med. 1999. Vol. 340. P. 115-126.

2. Libby P. Inflammation in atherosclerosis // Nature. 2002. Vol. 420. P. 868-874.

3. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease // N. Engl. J. Med. 2005. Vol. 352. P. 1685-1695.

4. Levi M., ten Cate H. Disseminated intravascular coagulation // N. Engl. J. Med. 1999. Vol. 341. P. 586-592.

5. Levi M., van der Poll T., Buller H.R. Bidirectional relation between inflammation and coagulation // Circulation. 2004. Vol. 109. P. 2698-2704.

6. Esmon C.T. The interactions between inflammation and coagulation // Br. J. Haematol. 2005. Vol. 131. P. 417- 430.

7. Davi G., Patrono C. Platelet activation and atherothrombosis // N. Engl. J. Med. 2007. Vol. 357. P. 2482- 2494.

8. Furie B., Furie B.C. Mechanisms of thrombus formation // N. Engl. J. Med. 2008. Vol. 359. P. 938-949.

9. Rosenberg R.D., Aird W.C. Vascularbed - specific hemostasis and hypercoagulable states // N. Engl. J. Med. 1999. P. 340. P. 1555-1564.

10. Ruggeri Z.M. Platelets in atherothrombosis // Nat. Med. 2002. Vol. 8. P. 1227-1234.

11. Monroe D.M., Hoffman M., Roberts H.R. Platelets and thrombin generation // Arterioscler. Thromb. Vasc. Biol. 2002. Vol. 22. P. 1381-1389.

12. Crawley J.T., Zanardelli S., Chion C.K. et al. The central role of thrombin in hemostasis // J. Thromb. Haemost. 2007. Vol. 5. N 1. P. 95-101.

13. Mackman N., Tilley R.E., Key N.S. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis // Arterioscler. Thromb. Vasc. Biol. 2007. Vol. 27. P. 1687-1693.

14. Gailani D., Renne T. Intrinsic pathway of coagulation and arterial thrombosis // Arterioscler. Thromb. Vasc. Biol. 2007. Vol. 27. P. 2507-2513.

15. van der Meijden P.E., Munnix I.C., Auger J.M., et al. Dual role of collagen in factor XII-dependent thrombus formation // Blood. 2009. Vol. 114. P. 881-890.

16. Schleicher R. I., Reichenbach F., Kraft P. et al. Platelets induce apoptosis via membrane-bound FasL // Blood. 2015. Vol. 126. P.1483-1493.

17. Gawaz M., Langer H., May A.E. Platelets in inflammation and atherogenesis // J. Clin. Invest. 2005. Vol. 115. P. 3378-3384.

18. Borensztajn K., Peppelenbosch M.P., Spek C.A. Factor Xa: at the crossroads between coagulation and signaling in physiology and disease // Trends. Mol. Med. 2008. Vol. 14. P. 429-440.

19. Borissoff J.I., Spronk H.M., Heeneman S. et al. Is thrombin a key player in the “coagulation-atherogenesis” maze? // Cardiovasc. Res. 2009. Vol. 82. P. 392-403.

20. Ossovskaya V.S., Bunnett N.W. Protease - activated receptors: contribution to physiology and disease // Physiol. Rev. 2004. Vol. 84. P. 579-621.

21. Massberg S., Brand K., Grüner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation // J. Exp. Med. 2002. Vol. 196. P. 887- 896.

22. Huo Y., Schober A., Forlow S.B. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein // E. Nat. Med. 2003. Vol. 9. P. 61-67.

23. Vital S.A., Felix B.F., Holloway P.M. et al. Fpr2/ ALX Regulates Neutrophil-Platelet Aggregation and Attenuates Cerebral Inflammation: Impact for Therapy in Cardiovascular Disease // Circulation. 2016. Vol. 133. To be published.

24. Weber C. Platelets and chemokines in atherosclerosis: partners in crime // Circ. Res. 2005. Vol. 96. P. 12-16.

25. Gleissner C.A., von Hundelshausen P., Ley K. Platelet chemokines in vascular disease. // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28. P. 1920-1927.

26. Rizvi M., Pathak D., Freedman J.E. et al. CD40- CD40 ligand interactions in oxidative stress, inflammation and vascular disease // Trends. Mol. Med. 2008. Vol. 14. P. 530-538.

27. Lievens D., Eijgelaar W.J., Biessen E.A. et al. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis // Thromb. Haemost. 2009. Vol. 102. P. 206-214.

28. Antoniades C., Bakogiannis C., Tousoulis D. et al. The CD40/CD40 ligand system: linking inflammation with atherothrombosis // J. Am. Coll. Cardiol. 2009. Vol.54. P. 669-677.

29. Semple J.W., Freedman J. Platelets and innate immunity // Cell. Mol. Life Sci. 2010. Vol. 67. P. 499-511.

30. Tyner J.W., Uchida O., Kajiwara N. et al. CCL5- CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection // Nat. Med. 2005. Vol. 11. P. 1180-1187.

31. Chiodoni C., Iezzi M., Guiducci C. et al. Triggering CD40 on endothelial cells contributes to tumor growth // J. Exp. Med. 2006. Vol. 203. P. 2441-2450.

32. Zhang S., Zhang Sh., Hu L. et al. Nucleotide-Binding Oligomerization Domain 2 Receptor Is Expressed in Platelets and Enhances Platelet Activation and Thrombosis // Circulation. 2015. Vol. 131. P. 1160-1170.

33. Simon D.I. Inflammation and vascular injury: basic discovery to drug development // Circ. J. 2011. Vol. 76. N 8. P. 1811-1818.

34. Simon D.I., Chen Z., Xu H. et al. Platelet glycoprotein Ib is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18) // J. Exp. Med. 2000. Vol. 192. N 2. P. 193-204.

35. Manthey H.D., Zernecke A. Dendritic cells in atherosclerosis: functions in immune regulation and beyond // Thromb. Haemost. 2011. Vol. 106. N 5. P. 772-778.

36. Lindemann S., Tolley N.D., Dixon D.A. et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis // J. Cell. Biol. 2001. Vol. 154. N 3. P. 485-490.

37. Shen M.-Y., Chen F.-Y., Hsu J.-F. et al. Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation // Blood. 2016. Vol. 127. N 10. P. 1336-1345.

38. Xiang B., Zhang G., Ye Sh. et al. Characterization of a Novel Integrin Binding Protein, VPS33B, Which Is Important for Platelet Activation and In Vivo // Circulation. 2015. Vol. 132. P. 2334-2344.

39. Zhu W., Jill C.G., Org E. et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk // Cell Vol. 2015. Vol. 65. N 1. P. 111-124.

40. Ricklin D., Hajishengallis G., Yang K. et al. Complement: a key system for immune surveillance and homeostasis // Nat. Immunol. 2010. Vol. 11. N 9. P. 785-797.

41. Acosta J., Qin X., Halperin J. Complement and complement regulatory proteins as potential molecular targets for vascular diseases // Curr. Pharm. Des. 2004. Vol. 10. N 2. P. 203-211.

42. Giannakopoulos B., Passam F., Rahgozar S. et al. Current concepts on the pathogenesis of the antiphospholipid syndrome // Blood. 2007. Vol. 109. N 2. P. 422-430.

43. Peerschke E., Yin W., Grigg S. et al. Blood platelets activate the classical pathway of human complement // J. Thromb. Haemost. 2006. Vol. 4. N 9. P. 2035-2042.

44. Peerschke E.I., Yin W., Ghebrehiwet B. Platelet mediated complement activation // Adv. Exp. Med. Biol. 2008. Vol. 632. P. 81-91.

45. Peerschke E.I., Yin W., Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis // Mol. Immunol. 2010. Vol. 47. N 13. P. 2170-2175.

46. Bäck J., Huber Lang M., Elgue G. et al. Distinctive regulation of contact activation by antithrombin and C1- inhibitor on activated platelets and material surfaces // Biomaterials. 2009. Vol. 30. N 34. P. 6573-6580.

47. Hamad O.A., Nilsson P.H., Wouters D. et al. Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1 // J. Immunol. 2010. Vol. 184. N 5. P. 2686-2692.

48. Patzelt J., Mueller K., Breuning S. et al. Expression of anaphylatoxin receptors on platelets in patients with coronary heart disease // Atherosclerosis. 2015. Vol. 238. N 2. P. 289-295.

49. Borissoff J.I., Heeneman S., Kilinc E. et al. Early atherosclerosis exhibits an enhanced procoagulant state // Circulation. 2010. Vol. 122. P. 821-830.

50. Seehaus S., Shahzad K., Kashif M. et al. Hypercoagulability inhibits monocyte transendothelial migration through protease-activated receptor-1-, phospholipase-Cbeta-, phosphoinositide 3-kinase-, and nitric oxide-dependent signaling in monocytes and promotes plaque stability // Circulation. 2009. Vol. 120. P. 774-784.

51. With Noto A.T., Mathiesen E.B., Osterud B. et al. Increased thrombin generation in persons with echogenic carotid plaques // Thromb. Haemost. 2008. Vol. 99. P. 602-608.

52. Kramer M.C., Rittersma S.Z., de Winter R.J. et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death // J. Am. Coll. Cardiol. 2010. Vol.55. P. 122-132.

53. Rittersma S.Z., van der Wal A.C., Koch K.T. et al. Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention // Circulation. 2005. Vol. 111. P. 1160-1165.

54. McCarthy M.J., Loftus I.M., Thompson M.M. et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology // J. Vasc. Surg. 1999. Vol. 30. N 2. P. 261-268.

55. von Birgelen C., Klinkhart W., Mintz G.S. et al. Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: an intravascular ultrasound study in vivo // J. Am. Coll. Cardiol. 2001. Vol. 37. N 7. P. 1864-1870.

56. Tenaglia A.N., Peters K.G., Sketch M.H. Jr et al. Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina // Am. Heart. J. 1998. Vol. 135. N 1. P. 10-14.

57. Slevin M., Turu M.M., Rovira N. et al. Identification of a “snapshot” of co-expressed angiogenic markers in laser-dissected vessels from unstable carotid plaques with targeted arrays // J. Vasc. Res. 2009. Vol. 47. N 4. P. 323-335.

58. Kolodgie F.D., Gold H.K., Burke A.P. et al. Intraplaque hemorrhage and progression of coronary atheroma // N. Engl. J. Med. 2003. Vol. 349. N 24. P. 2316- 2325.

59. Virmani R., Kolodgie F.D., Burke A.P. et al. Atherosclerotic plaque progression and vulnerability to rupture angiogenesis as a source of intraplaque hemorrhage // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. N 10. P. 2054-2061.

60. Hutter R., Valdiviezo C., Sauter B.V. et al. Caspase-3 and tissue factor expression in lipid-rich plaque macrophages evidence for apoptosis as link between inflammation and atherothrombosis // Circulation. 2004. Vol. 109. N 16. P. 2001-2008.

61. Fernandez-Ortiz A., Badimon J.J., Falk E. et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture // J. Am. Coll. Cardiol. 1994. Vol. 23. N 7. P. 1562-1569. 62. Toschi V., Gallo R., Lettino M. et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques // Circulation. 1997. Vol. 95. N 3. P. 594-599.

62. Badimon J.J., Lettino M., Toschi V. et al. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions // Circulation. 1999. Vol. 99. N 14. P. 1780-1787.

63. Day S.M., Reeve J.L., Pedersen B. et al. Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall // Blood. 2005. Vol. 105. N 1. P. 192-198.

64. Bhattacharjee G., Ahamed J., Pedersen B. et al. Regulation of tissue factor-mediated initiation of the coagulation cascade by cell surface grp78 // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. N 8. P. 1737-1743.

65. Sakakura K., Nakano M., Otsuka F. et al. Pathophysiology of atherosclerosis plaque progression // Heart. Lung. Circ. 2013. Vol. 22. N 6. P. 399-411.

66. Shah P.K., Falk E., Badimon J.J. et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture // Circulation. 1995. Vol. 92. N 6. P. 1565-1569.

67. Geng Y.-J., Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme // Am. J. Pathol. 1995. Vol. 147. N 2. P. 251-256.

68. Ehara S., Kobayashi Y., Yoshiyama M. et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction an intravascular ultrasound study // Circulation. 2004. Vol. 110. N 22. P. 3424-3429.

69. Maldonado N., Kelly-Arnold A., Vengrenyuk Y. et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture // Am. J. Physiol. Heart. Circ. Physiol. 2012. Vol. 303. N 5. P. 619-628.

70. Libby P., Ridker P.M., Maseri A. Inflammation and atherosclerosis // Circulation. 2002. Vol. 105. N 9. P. 1135-1143.

71. Ridker P.M., Thuren T., Zalewski A. et al. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS) // Am. Heart. J. 2011. Vol. 162. N 4. P. 597-605.

72. Ridker P.M. Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT) // J. Thromb. Haemost. 2009. Vol. 7. N 1. P. 332-339.

73. Gaziano J.M., Greenland P. When should aspirin be used for prevention of cardiovascular events? // JAMA. 2014. Vol. 312. N 23. P. 2503-2504.

74. Verheugt F.W., Gersh B.J. Aspirin beyond platelet inhibition // Am. J. Cardiol. 2002. Vol. 90. N 1. P. 39-41.

75. Cyrus T., Sung S., Zhao L. et al. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice // Circulation. 2002. Vol. 106. N 10. P. 1282- 1287.

76. Tous M., Ferre N., Vilella E. et al. Aspirin attenuates the initiation but not the progression of atherosclerosis in apolipoprotein E-deficient mice fed a high-fat, high-cholesterol diet // Basic Clin. Pharmacol. Toxicol. 2004. Vol. 95. N 1. P. 15-19.

77. Paul-Clark M.J., van Cao T., Moradi-Bidhendi N. et al. 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation // J. Exp. Med. 2004. Vol. 200. N 1. P. 69-78.

78. Kopp E., Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin // Science. 1994. Vol. 265. P. 956-959.

79. Steinhubl S.R., Badimon J.J., Bhatt D.L. et al. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease // Vasc. Med. 2007. Vol. 12. N 2. P. 113-122.

80. Ortiz-Munoz G., Mallavia B., Bins A. et al. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice // Blood. 2014. Vol.124., N 17. P. 2625-2634.

81. Ikeda Y., Shimada K., Teramoto T. et al. Low-dose aspirin for primary prevention of cardiovascular events in Japanese patients 60 years or older with atherosclerotic risk factors: a randomized clinical trial // JAMA. 2014. Vol. 312. N 23. P. 2510-2520.

82. Huynh K. Atherosclerosis: low-dose aspirin failed to improve cardiovascular outcomes // Nat. Rev. Cardiol. 2015. Vol. 12. N 1. P. 3-10.

83. Громов А.А., Рабко А.В., Кручинина М.В. и др. Лейкоцитарно-тромбоцитарная агрегация при инфаркте миокарда и нестабильной стенокардии // Вестник НГУ. Серия: Биология, клиническая медицина. 2006. Том 4., Вып. 6. С.31-38.

84. Li M., Zhang Y., Ren H. et al. Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model // Atherosclerosis. 2007. Vol. 194. N 2. P. 348-356.

85. Afek A., Kogan E., Maysel-Auslender S. et al. Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice // Microvasc. Res. 2009. Vol. 77. N 3. P. 364-369.

86. Quinn M.J., Bhatt D.L., Zidar F. et al. Effect of clopidogrel pretreatment on inflammatory marker expression in patients undergoing percutaneous coronary intervention // Am. J. Cardiol. 2004. Vol. 93. N 6. P. 679-684.

87. Ramadan R., Dhawan S.S., Syed H. et al. Effects of clopidogrel therapy on oxidative stress, inflammation, vascular function, and progenitor cells in stable coronary artery disease // J. Cardiovasc. Pharmacol. 2014. Vol. 63. N 4. P. 369-374.

88. Azar R.R., Kassab R., Zoghbi A. et al. Effects of clopidogrel on soluble CD40 ligand and on high-sensitivity C-reactive protein in patients with stable coronary artery disease // Am. Heart. J. 2006. Vol. 151. N 2. P. 521-524.

89. Klinkhardt U., Bauersachs R., Adams J. et al. Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease // Clin. Pharmacol. Ther. 2003. Vol. 73. N 3. P. 232-241.

90. Xiao Z., Theroux P. Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome // J. Am. Coll. Cardiol. 2004. Vol. 43. N 11. P. 1982-1988.

91. Waehre T., Damas J., Pedersen T. et al. Clopidogrel increases expression of chemokines in peripheral blood mononuclear cells in patients with coronary artery disease: results of a doubleblind placebo-controlled study // J. Thromb. Haemost. 2006. Vol. 4. N 10. P. 2140-2147.

92. Nagy B. Jr, Miszti-Blasius K., Kerenyi A. et al. Potential therapeutic targeting of platelet-mediated cellular interactions in atherosclerosis and inflammation // Curr. Med. Chem. 2012. Vol. 19. N 4. P. 518-531.

93. Subbanagounder G., Leitinger N., Shih P.T. et al. Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis in vitro and in vivo inhibition by WEB 2086 // Circ. Res. 1999. Vol. 85. N 4. P. 311-318.

94. Ewing M.M., de Vries M.R., Nordzell M. et al. Annexin A5 therapy attenuates vascular inflammation and remodeling and improves endothelial function in mice // Arterioscler. Thromb. Vasc. Biol. 2011. Vol. 31. N 1. P. 95-101.

95. Verschoor A., Langer H.F., Pan R. et al. Crosstalk between platelets and the complement system in immune protection and disease // Thromb. Haemost. 2013. Vol. 110. N 5. P. 910-919.

96. Hamad O.A., Back J., Nilsson P.H. et al. Platelets, complement, and contact activation: partners in inflammation and thrombosis // Adv. Exp. Med. Biol. 2012. Vol. 946. P. 185-205.

97. Ricklin D., Lambris J.D. Complement-targeted therapeutics // Nat. Biotechnol. 2007. Vol. 25. N 11. P. 1265-1275.

98. Ricklin D., Lambris J.D. Complement in immune and inflammatory disorders: therapeutic interventions // J. Immunol. 2013. Vol. 190. N 8. P. 3839-3847.

99. Hill A., Hillmen P., Richards S.J. et al. Sustained response and long-term safety of eculizumab in paroxysmal nocturnal hemoglobinuria // Blood. 2005. Vol. 106. N 7. P. 2559-2565.

100. Roth A., Hock C., Konik A. et al. Chronic treatment of paroxysmal nocturnal hemoglobinuria patients with eculizumab: safety, efficacy, and unexpected laboratory phenomena // Int. J. Hematol. 2011. Vol. 93. N 6. P. 704-714.

101. Chu S., Becker R., Berger P. et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis // J. Thromb. Haemost. 2010. Vol. 8. N 1. P. 148-156.

102. Glezeva N., Gilmer J.F., Watson C. J. et al. A Central Role for Monocyte-Platelet Interactions in Heart Failure // J. Cardiovask. Pharmacol. Ther. 2016. Vol. 21. N 3. P. 245-261.

103. Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. P. 1015-1022.

104. Annex B.H., Denning S.M., Channon K.M. et al. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes // Circulation. 1995. Vol. 91. P. 619-622.

105. Moreno P.R., Bernardi V.H., Lopez-Cuellar J. et al. Macrophages, smooth muscle cells, and tissue factor in unstable angina: implications for cell-mediated thrombogenicity in acute coronary syndromes // Circulation. 1996. Vol. 94. P. 3090-3097.

106. Marmur J.D., Thiruvikraman S.V., Fyfe B.S. et al. Identification of active tissue factor in human coronary atheroma // Circulation. 1996. Vol. 94. P. 1226-1232.

107. Ardissino D., Merlini P.A., Ariens R. et al. Tissue-factor antigen and activity in human coronary atherosclerotic plaques // Lancet. 1997. Vol. 349. P. 769-771.

108. Toschi V., Gallo R., Lettino M. et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques // Circulation. 1997. Vol. 95. P. 594-599.

109. Ardissino D., Merlini P.A., Bauer K.A. et al. Thrombogenic potential of human coronary atherosclerotic plaques // Blood. 2001. Vol. 98. P. 2726-2729.

110. Monroe D.M., Key N.S. The tissue factor - factor VIIa complex: procoagulant activity, regulation, and multitasking // J. Thromb. Haemost. 2007. Vol. 5. P. 1097- 1105.

111. Tilley R.E., Pedersen B., Pawlinski R. et al. Atherosclerosis in mice is not affected by a reduction in tissue factor expression // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 555-562.

112. Konings J., Govers-Riemslag J.W.P., ten Cate H. Novel insights into genetics of arterial thrombosis. In: Clinical cardiogenetics, ed. Baars H.F., Springer, New York, 2010.

113. Gertow K., Amato M., Werba J.P. et al. Tissue factor gene promoter haplotype associates with carotid intima-media thickness in subjects in cardiovascular risk prevention // Atherosclerosis. 2009. Vol. 207. P. 168-173.

114. Cortellaro M., Baldassarre D., Cofrancesco E. et al. Relation between hemostatic variables and increase of common carotid intima-media thickness in patients with peripheral arterial disease // Stroke. 1996. Vol. 27. P. 450- 454.

115. Green D., Foiles N., Chan C. et al. An association between clotting factor VII and carotid intima-media thickness: the CARDIA study // Stroke. 2010. V. 41. P. 1417-1422.

116. Thomas A.C., Campbell J.H. Targeted delivery of heparin and LMWH using a fibrin antibody prevents restenosis // Atherosclerosis. 2004. Vol. 176. P. 73-81.

117. Coughlin S.R. Thrombin signaling and protease-activated receptors // Nature. 2000. Vol. 407. P. 258- 264.

118. Wang D., Paria B.C., Zhang Q. et al. A role for Gab1/SHP2 in thrombin activation of PAK1: gene transfer of kinasedead PAK1 inhibits injury-induced restenosis // Circ. Res. 2009. Vol. 104. P. 1066-1075.

119. Hirano K. The roles of proteinaseactivated receptors in the vascular physiology and pathophysiology // Arterioscler. Thromb. Vasc. Biol. 2007. Vol. 27. P. 27-36.

120. Huber-Lang M., Sarma J.V., Zetoune F.S. et al. Generation of C5a in the absence of C3: a new complement activation pathway // Nat. Med. 2006. Vol. 12. P. 682-687.

121. Chen X., Ren S., Ma M.G. et al. Hiruloglike peptide reduces restenosis and expression of tissue factor and transforming growth factor-beta in carotid artery of atherosclerotic rabbits // Atherosclerosis. 2003. Vol. 169. P. 31-40.

122. Thome L.M., Gimple L.W., Bachhuber B.G. et al. Early plus delayed hirudin reduces restenosis in the atherosclerotic rabbit more than early administration alone: potential implications for dosing of antithrombin agents // Circulation. 1998. Vol. 98. P. 2301-2306.

123. Bea F., Kreuzer J., Preusch M. et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 2787-2792.

124. Khallou-Laschet J., Caligiuri G., Tupin E. et al. Role of the intrinsic coagulation pathway in atherogenesis assessed in hemophilic apolipoprotein E knockout mice // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. e123-e126.

125. Eitzman D.T., Westrick R.J., Shen Y. et al. Homozygosity for factor V Leiden leads to enhanced thrombosis and atherosclerosis in mice // Circulation. 2005. Vol. 111. P. 1822-1825.

126. Di Tullio M.R., Homma S., Jin Z. et al. Aortic atherosclerosis, hypercoagulability, and stroke the APRIS (Aortic Plaque and Risk of Ischemic Stroke) study // J. Am. Coll. Cardiol. 2008. Vol. 52. P. 855-861.

127. Paramo J.A., Orbe J., Beloqui O. et al. Prothrombin fragment 1+2 is associated with carotid intima-media thickness in subjects free of clinical cardiovascular disease // Stroke. 2004. Vol. 35. P. 1085-1089.

128. Folsom A.R., Wu K.K., Rosamond W.D. et al. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study // Circulation. 1997. Vol. 96. P. 1102-1108.

129. Methia N., Andre P., Denis C.V. et al. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice // Blood. 2001. Vol. 98. P. 1424-1428.

130. Danesh J., Lewington S., Thompson S.G. et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis // JAMA. 2005. Vol. 294. P. 1799-1809.

131. Bini A., Fenoglio J.J. Jr, Mesa-Tejada R. et al. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis: use of monoclonal antibodies // Arteriosclerosis. 1989. Vol. 9. P. 109-121.

132. Lepedda A.J., Cigliano A., Cherchi G.M. et al. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries // Atherosclerosis. 2009. Vol. 203. P. 112-118.

133. Dielis A.W., Castoldi E., Spronk H.M. et al. Coagulation factors and the protein C system as determinants of thrombin generation in a normal population // J. Thromb. Haemost. 2008. Vol. 6. P. 125-131.

134. Green D., Chan C., Kang J. et al. Longitudinal assessment of fibrinogen in relation to subclinical cardiovascular disease: the CARDIA study // J. Thromb. Haemost. 2010. Vol. 8. P. 489-495.

135. de Moerloose P., Boehlen F., Neerman- Arbez M. Fibrinogen and the risk of thrombosis // Semin. Thromb. Hemost. 2010. Vol. 36. P. 7-17.

136. Iwaki T., Sandoval-Cooper M.J., Brechmann M. et al. A fibrinogen deficiency accelerates the initiation of LDL cholesterol-driven atherosclerosis via thrombin generation and platelet activation in genetically predisposed mice // Blood. 2006. Vol. 107. P. 3883-3891.

137. Xiao Q., Danton M.J., Witte D.P. et al. Fibrinogen deficiency is compatible with the development of atherosclerosis in mice // J. Clin. Invest. 1998. Vol. 101. P. 1184-1194.

138. Folsom A.R. Hemostatic risk factors for atherothrombotic disease: an epidemiologic view // Thromb. Haemost. 2001. Vol. 86. P. 366-373.

139. Zhou D., Yang P.Y., Zhou B. et al. Fibrin D-dimer fragments enhance inflammatory responses in macrophages: role in advancing atherosclerosis // Clin. Exp. Pharmacol. Physiol. 2007. Vol. 34. P. 185-190.

140. Ishida T., Tanaka K. Effects of fibrin and fibrinogen-degradation products on the growth of rabbit aortic smooth muscle cells in culture // Atherosclerosis. 1982. Vol. 44. P. 161-174.

141. Abdalla S., Lother H., Langer A. et al. Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis // Cell. 2004. Vol. 119. P. 343-354.

142. Zito F., Lowe G.D., Rumley A. et al. Association of the factor XII 46C>T polymorphism with risk of coronary heart disease (CHD) in the WOSCOPS study // Atherosclerosis. 2002. Vol. 165. P. 153-158.

143. Govers-Riemslag J.W., Smid M., Cooper J.A. et al. The plasma kallikrein-kinin system and risk of cardiovascular disease in men // J. Thromb. Haemost. 2007. Vol. 5. P. 1896-1903.

144. Siegerink B., Govers-Riemslag J.W., Rosendaal F.R. et al. Intrinsic coagulation activation and the risk of arterial thrombosis in young women: results from the Risk of Arterial Thrombosis in relation to Oral contraceptives (RATIO) case-control study // Circulation. 2010. Vol. 122. P. 1854-1861.

145. Hagedorn I., Schmidbauer S., Pleines I. et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding // Circulation. 2010. Vol. 121. P. 1510-1517.

146. Gailani D., Renne T. The intrinsic pathway of coagulation: a target for treating thromboembolic disease? // J. Thromb. Haemost. 2007. Vol. 5. P. 1106-1112.

147. Schmaier A.H. The elusive physiologic role of factor XII // J. Clin. Invest. 2008. Vol.118. P. 3006-3009.

148. Muller F., Mutch N.J., Schenk W.A. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo // Cell. 2009. Vol. 139. P. 1143-1156.

149. Rocken C., Tautenhahn J., B hling F. et al. Prevalence and pathology of amyloid in atherosclerotic arteries // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. P. 676-677.

150. Maas C., Govers-Riemslag J.W., Bouma B. et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation // J. Clin. Invest. 2008. Vol. 118. P. 3208-3218.

151. Merlo C., Wuillemin W.A., Redondo M. et al. Elevated levels of plasma prekallikrein, high molecular weight kininogen and factor XI in coronary heart disease // Atherosclerosis. 2002. Vol. 161. P. 261-267.

152. Porcu P., Emanueli C., Desortes E. et al. Circulating tissue kallikrein levels correlate with severity of carotid atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2004. Vol. 24. P. 1104-1110.

153. Stone O.A., Richer C., Emanueli C. et al. Critical role of tissue kallikrein in vessel formation and maturation: implications for therapeutic revascularization // Arterioscler. Thromb. Vasc. Biol. 2009. Vol. 29. P. 657-664.

154. LaRusch G.A., Mahdi F., Shariat-Madar Z. et al. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis // Blood. 2010. Vol. 115. P. 5111-5120.

155. Crawley J., Lupu F., Westmuckett A.D. et al. Expression, localization, and activity of tissue factor pathway inhibitor in normal and atherosclerotic human vessels // Arterioscler. Thromb. Vasc. Biol. 2000. Vol. 20. P. 1362-1373.

156. Caplice N.M., Mueske C.S., Kleppe L.S. et al. Presence of tissue factor pathway inhibitor in human atherosclerotic plaques is associated with reduced tissue factor activity // Circulation. 1998. Vol. 98. P. 1051-1057.

157. Badimon J.J., Lettino M., Toschi V. et al. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions // Circulation. 1999. Vol. 99. P. 1780-1787.

158. Okajima K. Regulation of inflammatory responses by natural anticoagulants // Immunol. Rev. 2001. Vol. 184. P. 258-274.

159. Jang Y., Guzman L.A., Lincoff A.M. et al. Influence of blockade at specific levels of the coagulation cascade on restenosis in a rabbit atherosclerotic femoral artery injury model // Circulation. 1995. Vol. 92. P. 3041- 3050.

160. Oltrona L., Speidel C.M., Recchia D. et al. Inhibition of tissue factor-mediated coagulation markedly attenuates stenosis after balloon-induced arterial injury in minipigs // Circulation. 1997. Vol. 96. P. 646-652.

161. Zoldhelyi P., Chen Z.Q., Shelat H.S. et al. Local gene transfer of tissue factor pathway inhibitor regulates intimal hyperplasia in atherosclerotic arteries // Proc. Natl. Acad. Sci. U S A. 2001. Vol. 98. P. 4078-4083.

162. Kopp C.W., Holzenbein T., Steiner S. et al. Inhibition of restenosis by tissue factor pathway inhibitor: in vivo and in vitro evidence for suppressed monocyte hemoattraction and reduced gelatinolytic activity // Blood. 2004. Vol. 103. P. 1653-1661.

163. Westrick R.J., Bodary P.F., Xu Z. et al. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice // Circulation. 2001. Vol. 103. P. 3044-3046.

164. Pan S., White T.A., Witt T.A. et al. Vascular-directed tissue factor pathway inhibitor overexpression regulates plasma cholesterol and reduces atherosclerotic plaque development // Circ. Res. 2009. Vol. 105. P. 713-720.

165. Sakata T., Mannami T., Baba S. et al. Potential of free-form TFPI and PAI-1 to be useful markers of early atherosclerosis in a Japanese general population (the Suita Study): association with the intimalmedial thickness of carotid arteries // Atherosclerosis. 2004. Vol. 176. P. 355-360.

166. Mitchell C.T., Kamineni A., Palmas W. et al. Tissue factor pathway inhibitor, vascular risk factors and subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis // Atherosclerosis. 2009. Vol. 207. P. 277-283.

167. Blann A.D., Amiral J., McCollum C.N. et al. Differences in free and total tissue factor pathway inhibitor, and tissue factor in peripheral artery disease compared to healthy controls // Atherosclerosis. 2000. Vol. 152. P. 29- 34.

168. Massberg S., Grahl L., von Bruehl M.L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases // Nat. Med. 2010. Vol. 16. P. 887-896.

169. Mosnier L.O., Zlokovic B.V., Griffin J.H. The cytoprotective protein C pathway // Blood. 2007. Vol. 109. P. 3161-3172.

170. Waugh J.M., Li-Hawkins J., Yuksel E. et al. Thrombomodulin overexpression to limit neointima formation // Circulation. 2000. Vol. 102. P. 332-337.

171. Gerdes V.E., Kremer Hovinga J.A., ten Cate H. et al. Soluble thrombomodulin in patients with established atherosclerosis // J. Thromb. Haemost. 2004. Vol. 2. P. 200-201.

172. Peter K., Nawroth P., Conradt C. et al. Circulating vascular cell adhesion molecule-1 correlates with the extent of human atherosclerosis in contrast to circulating intercellular adhesion molecule-1, E-selectin, P-selectin, and thrombomodulin // Arterioscler. Thromb. Vasc. Biol. 1997. Vol. 17. P. 505-512.

173. Salomaa V., Matei C., Aleksic N. et al. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study // Lancet. 1999. Vol. 353. P. 1729-1734.

174. Wu K.K., Aleksic N., Ballantyne C.M. et al. Interaction between soluble thrombomodulin and intercellular adhesion molecule-1 in predicting risk of coronary heart disease // Circulation. 2003. Vol. 107. P. 1729-1732.

175. Aleksic N., Wang Y.W., Ahn C. et al. Assessment of coronary heart disease risk by combined analysis of coagulation factors // Atherosclerosis. 2008. Vol. 198. P. 294-300.

176. Lentz S.R., Miller F.J. Jr, Piegors D.J. et al. Anticoagulant responses to thrombin are enhanced during regression of atherosclerosis in monkeys // Circulation. 2002. Vol. 106. P. 842-846.

177. Castellino F.J., Ganopolsky J.G., Noria F. et al. Focal arterial inflammation is augmented in mice with a deficiency of the protein C gene // Thromb. Haemost. 2006. Vol. 96. P. 794-801.

178. Salomaa V., Matei C., Aleksic N. et al. Cross-sectional association of soluble thrombomodulin with mild peripheral artery disease: the ARIC study // Atherosclerosis. 2001. Vol. 157. P. 309-314.

179. Zorio E., Navarro S., Medina P. et al. Circulating activated protein C is reduced in young survivors of myocardial infarction and inversely correlates with the severity of coronary lesions // J. Thromb. Haemost. 2006. Vol. 4. P. 1530-1536.

180. Matsumoto K., Yano Y., Gabazza E.C. et al. Inverse correlation between activated protein C generationand carotid atherosclerosis in Type 2 diabetic patients // Diabet. Med. 2007. Vol. 24. P. 1322-1328.

181. Webb J.H., Blom A.M., Dahlbäck B. Vitamin K-dependent protein S localizing complement regulator C4b-binding protein to the surface of apoptotic cells // J. Immunol. 2002. Vol. 169. P. 2580-2586.

182. Anderson H.A., Maylock C.A., Williams J.A. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells // Nat. Immunol. 2003. Vol. 4. P. 87-91.

183. Liao D., Wang X., Li M. et al. Human protein S inhibits the uptake of AcLDL and expression of SR-A through Mer receptor tyrosine kinase in human macrophages // Blood. 2009. Vol. 113. P. 165-174.

184. Zhu D., Wang Y., Singh I. et al. Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor // Blood. 2010. Vol. 115. P. 4963-4972.

185. Randi A.M., Biguzzi E., Falciani F. et al. Identification of differentially expressed genes in coronary atherosclerotic plaques from patients with stable or unstable angina by cDNA array analysis // J. Thromb. Haemost. 2003. Vol. 1. P. 829-835.

186. Mahmoodi B.K., Brouwer J.L., Veeger N.J. et al. Hereditary deficiency of protein C or protein S confers increased risk of arterial thromboembolic events at a young age: results from a large family cohort study // Circulation. 2008. Vol. 118. P. 1659-1667.

187. Cho Y.P., Kwon T.W., Ahn J.H. et al. Protein C and/or S deficiency presenting as peripheral arterial insufficiency // Br. J. Radiol. 2005. Vol. 78. P. 601-605.

188. Aihara K., Azuma H., Akaike M. et al. Strain-dependent embryonic lethality and exaggerated vascular remodeling in heparin cofactor II-deficient mice // J. Clin. Invest. 2007. Vol. 117. P. 1514-1526.

189. Takamori N., Azuma H., Kato M. et al. High plasma heparin cofactor II activity is associated with reduced incidence of in-stent restenosis after percutaneous coronary intervention // Circulation. 2004. Vol. 109. P. 481-486.

190. Aihara K., Azuma H., Takamori N. et al. Heparin cofactor II is a novel protective factor against carotid atherosclerosis in elderly individuals // Circulation. 2004. Vol. 109. P. 2761-2765.

191. Giri T.K., Ahn C.W., Wu K.K. et al. Heparin cofactor II levels do not predict the development of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. P. 2689-2690.

192. Sofi F., Cesari F., Pratesi G. et al. Low protein Z levels in patients with peripheral arterial disease // Thromb. Haemost. 2007. Vol. 98. P. 1114-1117.

193. Pardos-Gea J., Ordi-Ros J., Serrano S. et al. Protein Z levels and anti-protein Z antibodies in patients with arterial and venous thrombosis // Thromb. Res. 2008. Vol. 121. P. 727-734.

194. Sofi F., Cesari F., Tu Y. et al. Protein Zdependent protease inhibitor and protein Z in peripheral arterial disease patients // J. Thromb. Haemost. 2009. Vol. 7. P. 731-735.

195. Mann J., Davies M.J. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption // Heart. 1999. Vol. 82. P. 265-268.

196. Burke A.P., Kolodgie F.D., Farb A. et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression // Circulation. 2001. Vol. 103. P. 934-940.

197. Finn A.V., Nakano M., Narula J. et al. Concept of vulnerable/ unstable plaque // Arterioscler. Thromb. Vasc. Biol. 2010. Vol. 30. P. 1282-1292.

198. Holmes D.R. Jr, Kereiakes D.J., Kleiman N.S. et al. Combining antiplatelet and anticoagulant therapies // J. Am. Coll. Cardiol. 2009. Vol. 54. P. 95-109.

199. Bhatt D.L., Fox K.A., Hacke W. et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events // N. Engl. J. Med. 2006. Vol. 354. P. 1706-1717.

200. The Warfarin Antiplatelet Vascular Evaluation Trial Investigators. Oral anticoagulant and antiplatelet therapy and peripheral arterial disease // N. Engl. J. Med. 2007. Vol. 357. P. 217-227.

201. Schulman S. Care of patients receiving long-term anticoagulant therapy // N. Engl. J. Med. 2003. Vol. 349. P. 675-683.

202. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients // BMJ. 2002. Vol. 324. P. 71-86.

203. Patrono C., Garc a Rodr guez L.A., Landolfi R. et al. Low-dose aspirin for the prevention of atherothrombosis // N. Engl. J. Med. 2005. Vol. 353. P. 2373-2383.

204. Ferroni P., Martini F., Cardarello C.M. et al. Enhanced interleukin-1beta in hypercholesterolemia: effects of simvastatin and low-dose aspirin // Circulation. 2003. Vol. 108. P. 1673-1675.

205. Chiang N., Hurwitz S., Ridker P.M. et al. Aspirin has a gender-dependent impact on antiinflammatory 15-epilipoxin A4 formation: a randomized human trial // Arterioscler. Thromb. Vasc. Biol. 2006. Vol. 26. N 2. P. e14-e17.

206. Morris T., Stables M., Hobbs A. et al. Effects of low-dose aspirin on acute inflammatory responses in humans // J. Immunol. 2009. Vol. 183. P. 2089-2096.

207. Muhlestein J.B. Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients // Thromb. Haemost. 2010. Vol. 103. P. 71-82.

208. Dieker H.J., French J.K., Joziasse I.C. et al. Antiplatelet therapy and progression of coronary artery disease: a placebo-controlled trial with angiographic and clinical follow-up after myocardial infarction // Am. Heart. J. 2007. Vol. 153. N 1. P. 66.e1-66.e8.

209. The Post Coronary Artery Bypass Graft Trial Investigators. The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts // N. Engl. J. Med. 1997. Vol. 336. P. 153-162.

210. Byington R.P., Evans G.W., Espeland M.A. et al. Effects of lovastatin and warfarin on early carotid atherosclerosis: sexspecific analyses // Circulation. 1999. Vol. 100. N 3. P. e14-e17.

211. Knatterud G.L., Rosenberg Y., Campeau L. et al. Long-term effects on clinical outcomes of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation in the post coronary artery bypass graft trial // Circulation. 2000. Vol. 102. P. 157-165.

212. Spronk H.M., Soute B.A., Schurgers L.J. et al. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats // J. Vasc. Res. 2003. Vol. 40. P. 531-537.

213. Rennenberg R.J., van Varik B.J., Schurgers L.J. et al. Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans // Blood. 2010. Vol. 115. P. 5121-5123.

214. Schulman S., Kearon C., Kakkar A.K. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism // N. Engl. J. Med. 2009. Vol. 361. P. 2342-2352.

215. Connolly S.J., Ezekowitz M.D., Yusuf S. et al. Dabigatran versus warfarin in patients with atrial fibrillation // N. Engl. J. Med. 2009. Vol. 361. P. 1139-1151.

216. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation // European Heart Journal. 2016. Vol. 37. P. 267-315.

217. Роль тестирования функциональной активности тромбоцитов в профилактике сердечно-сосудистых осложнений у больных // Рациональная фармакотерапия в кардиологии. 2014. T. 10. Вып. 6. С. 679-687.

218. Рагозина Е.Ю. Оценка выраженности и прогностической значимости системной воспалительной реакции у больных острым инфарктом миокарда // Автореф. дисс к.м.н. Самара, 2015, 143 с.

219. Бурячковская Л.И., Сумароков А.Б., Учитель И.А. и др. Противовоспалительное действие клопидогрела при атеросклерозе // Рациональная фармакотерапия в кардиологии. 2011. Т. 7. Вып. 6. С. 677-684.

220. Libby P., Pasterkamp G. Requiem for the ‘vulnerable plaque’ // Eur. Heart. J. 2015. Vol. 36. N 43. P. 2984-2987.

221. Meijles D.N., Fan L.M., Ghazaly M.M. et al. p22phoxC242T SNP Inhibits Inflammatory Oxidative Damage to Endothelial Cells and Vessels // Circulation. 2016. Vol. 133. (published online before print May 6, 2016.).

222. Li X., Kleinschnitz C., Frank E. et al. Platelets induce apoptosis via membrane-bound FasL // Blood. 2015. Vol. 126. P. 1483-1493.


Рецензия

Для цитирования:


Громов А.А., Кручинина М.В., Шварц Я.Ш., Кручинин В.Н., Рыхлицкий С.В. СИСТЕМА ГЕМОСТАЗА И АТЕРОГЕНЕЗ. Атеросклероз. 2016;12(3):39-60.

For citation:


Gromov A.A., Kruchinina M.V., Schwartz Y.A., Kruchinin V.N., Ryhlitsky S.V. SYSTEM OF HEMOSTASIS AND ATHEROGENESIS. Ateroscleroz. 2016;12(3):39-60. (In Russ.)

Просмотров: 676


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)