INTERNALISATION OF CALCIUM PHOSPHATE AND MAGNESIUM PHOSPHATE BIONS BY ENDOTHELIAL CELLS UTILISING SCANNING ELECTRON MICROSCOPY AND CONFOCAL MICROSCOPY
https://doi.org/10.15372/ATER20190202
Abstract
Aim of the study was to investigate whether endothelial cells internalise magnesium phosphate and calcium phosphate bions.
Material and methods. Magnesium phosphate and calcium phosphate bions synthesised through supersaturation of the culture medium with the respective salts were further added to the confluent cultures of primary human coronary artery endothelial cells for 4 h. Internalisation was evaluated by backscattered scanning electron microscopy (BSEM) and confocal microscopy. For BSEM, cells were fixed in 10% neutral phosphate buffered formalin, postfixed/stained by 2 % osmium tetroxide, dehydrated in a graded ethanol series, stained by 2% uranyl acetate, impregnated into acetone:epoxy resin (1:1) and into the fresh epoxy resin with its subsequent polymerisation, grinding, and polishing. Samples were then counterstained by lead citrate, sputter coated with carbon, and visualised utilising BSEM. Confocal microscopy was conducted after exposure of endothelial cells to FITC-labeled magnesium phosphate bions or calcein-labeled calcium phosphate bions with the following staining by a pH sensor LysoTracker Red and nuclear stain Hoechst 33342.
Results. All types of bions were internalised by endothelial cells within 4 h. BSEM after long-term postfixation/ staining by osmium tetroxide and uranyl acetate, embedding into epoxy resin and counterstaining by lead citrate visualised multiple black electron-dense mineral inclusions which were not detected both within the control cells and in the intercellular space. Confocal microscopy also detected internalised MPB and CPB in cytosol and lysosomes.
Conclusion. BSEM visualised MPB and CPB internalised by endothelial cells after 4 h exposure while confocal microscopy detected their colocalisation with lysosomes. MPB is an appropriate comparison group to study the specificity of CPB-related pathogenic effects as both of these bion types have close physico-chemical properties and are similarly internalised.
About the Authors
D. K. ShishkovaRussian Federation
R. A. Mukhamadiyarov
Russian Federation
E. A. Velikanova
Russian Federation
Yu. A. Kudryavsteva
Russian Federation
A. G. Kutikhin
Russian Federation
References
1. Gooding H., Johnson H.M. The unchartered frontier: preventive cardiology between the ages of 15 and 35 years // Curr. Cardiovasc. Risk Rep. 2016. Vol. 10, N 9. pii 29.
2. Larsson T.E., Olauson H., Hagström E., Ingelsson E., Arnlov J., Lind L., Sundstrom J. Conjoint effects of serum calcium and phosphate on risk of total, cardiovascular, and noncardiovascular mortality in the community // Arterioscler. Thromb. Vasc. Biol. 2010. Vol. 30, N 2. P. 333–339.
3. Sun Z.L., Xie Q.Y., Guo G.L., Ma K., Huang Y.Y. Serum fetuin-A levels in patients with cardiovascular disease: a meta-analysis // Biomed. Res. Int. 2014. Vol. 2014. P. 691540.
4. Sonou T., Ohya M., Yashiro M., Masumoto A., Nakashima Y., Ito T., Mima T., Negi S., Kimura- Suda H., Shigematsu T. Mineral composition of phosphate-induced calcification in a rat aortic tissue culture model // J. Atheroscler. Thromb. 2015. Vol. 22, N 11. P. 1197–206.
5. Heiss A., Pipich V., Jahnen-Dechent W., Schwahn D. Fetuin-A is a mineral carrier protein: small angle neutron scattering provides new insight on Fetuin-A controlled calcification inhibition // Biophys. J. 2010. Vol. 99, N 12. P. 3986–3995.
6. Köppert S., Büscher A., Babler A., Ghallab A., Buhl E.M., Latz E., Hengstler J.G., Smith E.R., Jahnen-Dechent W. Cellular clearance and biological activity of calciprotein particles depend on their maturation state and crystallinity // Front. Immunol. 2018. Vol. 9. ID 1991.
7. Wu C.Y., Young L., Young D., Martel J., Young J.D. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids // PLoS One. 2013. Vol. 8, N 9. ID e75501.
8. Kutikhin A.G., Velikanova E.A., Mukhamadiyarov R.A., Glushkova T.V., Borisov V.V., Matveeva V.G., Antonova L.V., Filip’ev D.E., Golovkin A.S., Shishkova D.K., Burago A.Y., Frolov A.V., Dolgov V.Y., Efimova O.S., Popova A.N., Malysheva V.Yu., Vladimirov A.A., Sozinov S.A., Ismagilov Z.R., Russakov D.M., Lomzov A.A., Pyshnyi D.V., Gutakovsky A.K., Zhivodkov Yu.A., Demidov E.A., Peltek S.E., Dolganyuk V.F., Babich O.O., Grigoriev E.V., Brusina E.B., Barbarash O.L., Yuzhalin A.E. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anticalcification proteins defines pathogenic effects of calcium phosphate bions // Sci. Rep. 2016. Vol. 6. ID 27255.
9. Young J.D., Martel J., Young D., Young A., Hung C.M., Young L., Chao Y.J., Young J., Wu C.Y. Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria // PLoS One. 2009. Vol. 4, N 5. ID e5421.
10. Шишкова д.К., глушкова Т.в., Ефимова О.С., попова А.н., малышева в.ю., Колмыков Р.п., исмагилов З.Р., гутаковский А.К., живодков ю.А., Кожухов А.С., долганюк в.ф., барбараш О.Л., Кутихин А.г. Сравнение морфологических и химических свойств сферических и игольчатых кальций-фосфатных бионов // Комплекс. пробл. серд.сосуд. заболеваний. 2019. Т. 8, ¹ 1. С. 59–69.
11. Шишкова д.К., великанова Е.А., матвеева в.г., Кудрявцева ю.А., Кутихин А.г. Специфичная токсичность кальций-фосфатных бионов для культур венозных и артериальных эндотелиальных клеток человека // Патол. физиология и эксперим. терапия. 2019. Т. 63, ¹ 1. С. 53–61.
12. Шишкова д.К., Синицкий м.ю., великанова Е.А., Кутихин А.г. Кальций-фосфатные бионы индуцируют секрецию провоспалительных цитокинов интерлейкина-6 и интерлейкина-8 артериальными эндотелиальными клетками in vitro // Цитокины и воспаление. 2018. Т. 17, ¹ 1-4. С. 80–85.
13. Кутихин А.г., великанова Е.А., Шишкова д.К. Форма кальций-фосфатных бионов определяет выраженность вызываемого ими проатеросклеротического сдвига профиля секретируемых эндотелиальными клетками цитокинов // Евраз. кардиол. журн. 2017. ¹ 4. С. 4–9.
14. Шишкова д.К., великанова Е.А., Кривкина Е.О., миронов А.в., Кудрявцева ю.А., Кутихин А.г. Кальций-фосфатные бионы специфично индуцируют гипертрофию поврежденной интимы у крыс // Рос. кардиол. журн. 2018. Т. 23, ¹ 9. С. 33–38.
15. Шишкова д.К., великанова Е.А., Кривкина Е.О., миронов А.в., Кудрявцева ю.А., Кутихин А.г. Токсическое действие кальций-фосфатных бионов на адвентицию брюшной аорты крыс // Атеросклероз и дислипидемии. 2018. Т. 3, ¹ 32. С. 37–43.
16. Queiroz K.C., Bijlsma M.F., Tio R.A., Zeebregts C.J., Dunaeva M., Ferreira C.V., Fuhler G.M., Kuipers E.J., Alves M.M., Rezaee F., Spek C.A., Peppelenbosch M.P. Dichotomy in Hedgehog signaling between human healthy vessel and atherosclerotic plaques // Mol. Med. 2012. Vol. 18. P. 1122–1127.
17. Aghagolzadeh P., Bachtler M., Bijarnia R., Jackson C., Smith E.R., Odermatt A., Radpour R., Pasch A. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α // Atherosclerosis. 2016. Vol. 251. P. 404–414.
18. Smith E.R., Hanssen E., McMahon L.P., Holt S.G. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage // PLoS One. 2013. Vol. 8, N 4. ID e60904.
19. Шишкова д.К., глушкова Т.в., Ефимова О.С., попова А.н., малышева в.ю., Колмыков Р.п., исмагилов З.Р., гутаковский А.К., живодков ю.А., Кожухов А.С., Севостьянов О.г., долганюк в.ф., Кутихин А.г. Морфологическая и химическая характеризация магний-фосфатных и кальций-фосфатных бионов // Фундамент. и клин. медицина. 2019. Т. 4, ¹ 2. С. 6–16.
20. Шишкова д.К., великанова Е.А., Кутихин А.г. Специфичная индукция кальций-фосфатными бионами провоспалительного сдвига профиля цитокинов, секретируемых эндотелиальными клетками // Кардиол. вестн. 2018. Т. 13, ¹ 1. С. 51–58.
21. Liu Z., Xiao Y., Chen W., Wang B., Wang G., Xub X., Tang R. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity // J. Mater. Chem. B. 2014. Vol. 2. P. 3480–3489.
22. Shyong Y.J., Wang M.H., Kuo L.W., Su C.F., Kuo W.T., Chang K.C., Lin F.H. Mesoporous hydroxyapatite as a carrier of olanzapine for long-acting antidepression treatment in rats with induced depression // J. Control Release. 2017. Vol. 255. P. 62–72.
23. Zhang C.Y., Sun X.Y., Ouyang J.M., Gui B.S. Diethyl citrate and sodium citrate reduce the cytotoxic effects of nanosized hydroxyapatite crystals on mouse vascular smooth muscle cells // Int. J. Nanomedicine. 2017. Vol. 12. P. 8511–8525.
24. Yuan Y., Liu C., Qian J., Wang J., Zhang Y. Sizemediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells // Biomaterials. 2010. Vol. 31, N 4. P. 730–740.
25. мухамадияров Р.А., Кутихин А.г. Исследование нормальной и патологической микроскопической анатомии кровеносных сосудов при помощи сканирующей электронной микроскопии в обратнорассеянных электронах // Фундамент. и клин. медицина. 2019. Т. 4, ¹ 1. С. 6–15.
Review
For citations:
Shishkova D.K., Mukhamadiyarov R.A., Velikanova E.A., Kudryavsteva Yu.A., Kutikhin A.G. INTERNALISATION OF CALCIUM PHOSPHATE AND MAGNESIUM PHOSPHATE BIONS BY ENDOTHELIAL CELLS UTILISING SCANNING ELECTRON MICROSCOPY AND CONFOCAL MICROSCOPY. Ateroscleroz. 2019;15(2):8-16. (In Russ.) https://doi.org/10.15372/ATER20190202