Preview

Ateroscleroz

Advanced search

Chronic heart failure: from pathogenesis to personalized therapy and digital technologies

https://doi.org/10.52727/2078-256X-2025-21-3-340-361

Abstract

Objective. To systematize and critically analyze current approaches to the diagnosis and treatment of chronic heart failure (CHF), with a focus on personalized therapeutic strategies and the integration of digital technologies into clinical practice.
Material and methods. A systematic search was conducted in PubMed, Scopus, Web of Science, and eLibrary databases for the period 2019–2024. Keywords included: “chronic heart failure”, “CHF pathogenesis”, “personalized CHF therapy”, and “digital technologies in cardiology”. A total of 145 sources meeting the inclusion criteria were selected and analyzed.
Results. The review describes the most recent pathophysiological mechanisms of CHF development and examines current pharmacological and device-based therapies, including SGLT2 inhibitors, sacubitril/valsartan, cardiac resynchronization therapy, implantable cardioverterdefibrillators, and mechanical circulatory support devices. Special attention is given to the role of digital technologies, including telemedicine, remote monitoring, and artificial intelligence, in managing patients with CHF.
Conclusions. A personalized approach, incorporating pharmacogenetics and the implementation of digital solutions, represents a promising direction for improving the effectiveness of CHF treatment and patient outcomes. Further integration of innovative technologies into clinical practice and addressing the accessibility of novel therapeutic methods are required.

About the Authors

A. O. Yurkovskiy
Novosibirsk State University; Research Institute of Fundamental and Clinical Medicine
Russian Federation

Anton O. Yurkovskiy, postgraduate student, cardiology resident

1, Pirogova st., Novosibirsk, 630090

2, Timakova st., Novosibirsk, 630060



N. G. Lozhkina
Novosibirsk State University; Research Institute of Fundamental and Clinical Medicine; City Clinical Hospital No1
Russian Federation

Natalya G. Lozhkina, doctor of medical sciences, professor, head of the clinical and experimental cardiology group

1, Pirogova st., Novosibirsk, 630090

2, Timakova st., Novosibirsk, 630060

6, Zalesskogo st., Novosibirsk, 630047



S. N. Artemenko
Research Institute of Fundamental and Clinical Medicine
Russian Federation

Sergey N. Artemenko, doctor of medical sciences, professor of RAS, deputy director for clinical research

2, Timakova st., Novosibirsk, 630060



References

1. Russian Society of Cardiology. Disorders of lipid metabolism. Clinical guidelines 2023. Russian Journal of Cardiology, 2023; 28 (5): 5471 (In Russ.). doi: 10.15829/1560-4071-2023-5471

2. Ezhov M.V., Sergienko I.V., Kukharchuk V.V. Clinical guidelines for lipid metabolism disorders 2023: What’s new? Atherosclerosis and Dyslipidemias, 2023; (3): 5–9 (In Russ.). doi: 10.34687/2219-8202.JAD.2023.03.0001

3. Нестеров В.С., Урванцева И.А., Воробьев А.С. Хроническая сердечная недостаточность: современные проблемы и пути их решения. Лечащий врач, 2018; 7: 11–14. [Nesterov V.S., Urvantseva I.A., Vorobyev A.S. Chronic heart failure: current problems and ways to solve them. Therapist, 2018; 7: 11–14 (In Russ.).

4. GBD 2020 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2020: a systematic analysis for the Global Burden of Disease Study 2020. Lancet, 2020; 396 (10258): 1204–1222. doi: 10.1016/S0140-6736(20)30925-9

5. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats J.A.CS, Falk V., González-Juanatey J.R., Harjola V.P., Jankowska E.A., Jessup M., Linde C., Nihoyannopoulos P., Parissis J.T., Pieske B., Riley J.P., Rosano G.M.C., Ruilope L.M., Ruschitzka F., Rutten F.H., van der Meer P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart. J., 2016; 37 (27): 2129–2200. doi: 10.1093/eurheartj/ehw128

6. Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.D., Elkind M.S.V., Evenson K.R., Ferguson J.F., Gupta D.K., Khan S.S., Kissela B.M., Knutson K.L., Lee C.D., Lewis T.T., Liu J., Loop M.S., Lutsey P.L., Ma J., Mackey J., Martin S.S., Matchar D.B., Mussolino M.E., Navaneethan S.D., Perak A.M., Roth G.A., Samad Z., Satou G.M., Schroeder E.B., Shah S.H., Shay C.M., Stokes A., VanWagner L.B., Wang N.Y., Tsao C.W. Heart disease and stroke statistics-2021 update. Circulation, 2021; 143 (8): e254– e743. doi: 10.1161/CIR.0000000000000950

7. Russian Society of Cardiology. Clinical guidelines for chronic heart failure (CHF), 2023–2024. Moscow, 2024. (In Russ.).

8. Cardiology. National guidance. Ed. by E.I. Chazov. Moscow: GEOTAR-Media, 2020. (In Russ.).

9. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., Lainscak M., Lam C.S.P., Lyon A.R., McMurray J.J.V., Mebazaa A., Mindham R., Muneretto C., Francesco Piepoli M., Price S., Rosano G.M.C., Ruschitzka F., Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart. J., 2021; 42 (36): 3599–3726. doi: 10.1093/eurheartj/ehab368

10. Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M., Deswal A., Drazner M.H., Dunlay S.M., Evers L.R., Fang J.C., Fedson S.E., Fonarow G.C., Hayek S.S., Hernandez A.F., Khazanie P., Kittleson M.M., Lee C.S., Link M.S., Milano C.A., Nnacheta L.C., Sandhu A.T., Stevenson L.W., Vardeny O., Vest A.R., Yancy C.W. 2022 AHA/ACC/HFSA Guideline for the management of heart failure. J. Am. Coll. Cardiol., 2022; 79 (17): e263–e421. doi: 10.1016/j.jacc.2021.12.012

11. McMurray J.J., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., Zile M.R. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med., 2014; 371: 993–1004. doi: 10.1056/NEJMoa1409077

12. Anker S.D., Butler J., Filippatos G., Ferreira J.P., Bocchi E., Böhm M., Brunner-La Rocca H.P., Choi D.J., Chopra V., Chuquiure-Valenzuela E., Giannetti N., Gomez-Mesa J.E., Janssens S., Januzzi J.L., Gonzalez-Juanatey J.R., Merkely B., Nicholls S.J., Perrone S.V., Piña I.L., Ponikowski P., Senni M., Sim D., Spinar J., Squire I., Taddei S., Tsutsui H., Verma S., Vinereanu D., Zhang J., Carson P., Lam C.S.P., Marx N., Zeller C., Sattar N., Jamal W., Schnaidt S., Schnee J.M., Brueckmann M., Pocock S.J., Zannad F., Packer M. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med., 2021; 385: 1451–1461. doi: 10.1056/NEJMoa2107038

13. Papait R., Serio S., Condorelli G. Molecular and epigenetic mechanisms of heart failure: role of inflammation and oxidative stress. Nat. Rev. Cardiol., 2020; 17 (10): 631–649. doi: 10.1038/s41569-020-0384-0

14. Bers D.M. Cardiac excitation–contraction coupling. Circ Res., 2021; 126 (6): 791–804. doi: 10.1161/CIRCRESAHA.121.318158

15. Louch W.E., Sejersted O.M., Swift F. T-tubule remodelling in human heart failure. J. Am. Coll. Cardiol., 2018; 72 (5): 567–578. doi: 10.1016/j.jacc.2018.06.050

16. Braunwald E. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol., 2016; 13 (4): 233–245. doi: 10.1038/nrcardio.2016.25

17. Shooshtarian A.K., O’Gallagher K., Shah A.M., Zhang M. SERCA2a dysfunction in the pathophysiology of heart failure with preserved ejection fraction: a direct role is yet to be established. Heart. Fail. Rev., 2025; 30 (3): 545–564. doi: 10.1007/s10741-025-10487-1

18. Kowalski F., Adamowicz J., Jozwicki J., Grzanka D., Drewa T. The role of early diagnosis of emphysematous cystitis: A case report and literature review. Urology Case Reports., 2021; 36: 101581. doi: 10.1016/j.eucr.2021.101581

19. Neurohumoral activation in heart failure. Int. J. Mol. Sci., 2023; 24 (3): 1234. doi: 10.3390/ijms24031234

20. Floras J.S. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J. Am. Coll. Cardiol., 2009; 54 (5): 375–385. doi: 10.1016/j.jacc.2009.03.050

21. Hartupee J., Mann D. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardio.l, 2017; 14: 30–38. doi: 10.1038/nrcardio.2016.163

22. Clinical use of markers of neurohormonal activation in heart failure. Rev. Esp. Cardiol., 2004; 57 (1): 1–11. doi: 10.1016/S0300-8932(04)70841-4

23. Anand I.S., Fisher L.D., Chiang Y.T., Latini R., Masson S., Maggioni A.P., Glazer R.D., Tognoni G., Cohn J.N., Val-HeFT Investigators. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation, 2003; 107 (9): 1278–1283. doi: 10.1161/01.cir.0000054164.99881.00

24. Manolis A.A., Manolis T.A., Manolis A.S. Neurohumoral activation in heart failure. Int. J. Mol. Sci., 2023; 24 (20): 15472. doi: 10.3390/ijms242015472

25. Ding J., Yu M., Jiang J., Luo Y., Zhang Q., Wang S., Yang F., Wang A., Wang L., Zhuang M., Wu S., Zhang Q., Xia Y., Lu D. Angiotensin II decreases endothelial nitric oxide synthase phosphorylation via AT₁R Nox/ROS/PP2A pathway. Front. Physiol., 2020; 1: 566410. doi: 10.3389/fphys.2020.566410

26. Valensi P. Autonomic nervous system activity changes in patients with hypertension and overweight: role and therapeutic implications. Cardiovasc. Diabetol., 2021; 20: 170. doi: 10.1186/s12933-021-01356-w

27. Yamaguchi H., Gomez R.A., Sequeira-Lopez M.L.S. Renin cells, from vascular development to blood pressure sensing. Hypertension, 2023; 80 (8): 1580–1589. doi: 10.1161/HYPERTENSIONAHA.123.20577

28. Beall R.F., Leung A.A., Quinn A.E., Salmon C., Scory T.D., Bresee L.C., Ronksley P.E. Laboratory testing and antihypertensive medication adherence following initial treatment of incident, uncomplicated hypertension: A real-world data analysis. J. Clin. Hypertens. (Greenwich), 2022; 24 (10): 1316–1326. doi: 10.1111/jch.14567

29. Рыжова Т.В. Хроническая сердечная недостаточность при разных клинических состояниях. Эффективная фармакотерапия, 2023;19(40):19–21. [Ryzhova T.V. Chronic heart failure in various clinical conditions. Effective Pharmacotherapy, 2023; 19 (40): 19–21 (In Russ.).

30. Mehta J.K., Kaur G., Buttar H.S., Bagabir H.A., Bagabir R.A., Bagabir S.A., Haque S., Tuli H.S., Telessy I.G. Role of the renin–angiotensin system in the pathophysiology of coronary heart disease and heart failure: Diagnostic biomarkers and therapy with drugs and natural products. Front. Physiol., 2023; 14: 1034170. doi: 10.3389/fphys.2023.1034170

31. Kuwahara K. The natriuretic peptide system in heart failure: Pathophysiological and therapeutic implications. J. Cardiol., 2021; 78 (1): 1–7. doi: 10.1016/j.jjcc.2021.03.011

32. Potter L.R., Yoder A.R., Flora D.R., Antos L.K., Dickey D.M. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol., 2011; 205: 341–366. doi: 10.1007/978-3-642-17514-6_16

33. Volpe M., Rubattu S., Burnett J.C.Jr. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur. Heart. J., 2014;35(7):419–425. – doi: 10.1093/eurheartj/eht466

34. Shi Y., Zhang H., Huang S., Yin L., Wang F., Luo P., Huang H. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Sig. Transduct. Target. Ther., 2022; 7 (1): 200. doi: 10.1038/s41392-022-01055-2

35. Zverev Y.F., Bryukhanov V.M. Inhibition of Na+/H+ exchange as a novel approach to myocardial protection from ischemic and reperfusion injury. Reviews in Clinical Pharmacology and Drug Therapy, 2003; 3: 16–34. (In Russ.).

36. Thum T. Noncoding RNAs and myocardial fibrosis. Nat. Rev. Cardiol., 2021; 18 (9): 601–633. doi: 10.1038/s41569-021-00537-8

37. Kumarswamy R., Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ. Res., 2013; 113 (6): 676–689. doi: 10.1161/CIRCRESAHA.113.300226

38. The Digitalis Investigation Group (DIG) Investigators. The effect of digoxin on mortality and morbidity in patients with heart failure. N. Engl. J. Med., 1997; 336 (8): 525–533.

39. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N. Engl. J. Med., 1987: 316 (23): 1429–1435.

40. Pitt B., Zannad F., Remme W.J., Cody R., Castaigne A., Perez A., Palensky J., Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med., 1999; 341 (10): 709–717. doi: 10.1056/NEJM199909023411001

41. McMurray J.J., Solomon S.D., Inzucchi S.E., Køber L., Kosiborod M.N., Martinez F.A., Ponikowski P., Sabatine M.S., Anand I.S., Bělohlávek J., Böhm M., Chiang C.E., Chopra V.K., de Boer R.A., Desai A.S., Diez M., Drozdz J., Dukát A., Ge J., Howlett J.G., Katova T., Kitakaze M., Ljungman C.E.A., Merkely B., Nicolau J.C., O’Meara E., Petrie M.C., Vinh P.N., Schou M., Tereshchenko S., Verma S., Held C., DeMets D.L., Docherty K.F., Jhund P.S., Bengtsson O., Sjöstrand M., Langkilde A.M. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med., 2019; 381 (21): 1995–2008. doi: 10.1056/NEJMoa1911303

42. Packer M., Anker S.D., Butler J., Filippatos G., Pocock S.J., Carson P., Januzzi J., Verma S., Tsutsui H., Brueckmann M., Jamal W., Kimura K., Schnee J., Zeller C., Cotton D., Bocchi E., Böhm M., Choi D.J., Chopra V., Chuquiure E., Giannetti N., Janssens S., Zhang J., Gonzalez Juanatey J.R., Kaul S., Brunner- La Rocca H.P., Merkely B., Nicholls S.J., Perrone S., Pina I., Ponikowski P., Sattar N., Senni M., Seronde M.F., Spinar J., Squire I., Taddei S., Wanner C., Zannad F. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med., 2020; 383 (15): 1413–1424. doi: 10.1056/NEJMoa2022190

43. Solomon S.D., McMurray J.J., Anand I.S., Ge J., Lam C.S.P., Maggioni A.P., Martinez F., Packer M., Pfeffer M.A., Pieske B., Redfield M.M., Rouleau J.L., van Veldhuisen D.J., Zannad F., Zile M.R., Desai A.S., Claggett B., Jhund P.S., Boytsov S.A., Comin-Colet J., Cleland J., Düngen H.D., Goncalvesova E., Katova T., Kerr Saraiva J.F., Lelonek M., Merkely B., Senni M., Shah S.J., Zhou J., Rizkala A.R., Gong J., Shi V.C., Lefkowitz M.P. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N. Engl. J. Med., 2019; 381 (17): 1609–1620. doi: 10.1056/NEJMoa1908655

44. Teerlink J.R., Diaz R., Felker G.M., McMurray J.J.V., Metra M., Solomon S.D., Adams K.F., Anand I., Arias-Mendoza A., Biering-Sørensen T., Böhm M., Bonderman D., Cleland J.G.F., Corbalan R., Crespo-Leiro M.G., Dahlström U., Echeverria L.E., Fang J.C., Filippatos G., Fonseca C., Goncalvesova E., Goudev A.R., Howlett J.G., Lanfear D.E., Li J., Lund M., Macdonald P., Mareev V., Momomura S.I., O’Meara E., Parkhomenko A., Ponikowski P., Ramires F.J.A., Serpytis P., Sliwa K., Spinar J., Suter T.M., Tomcsanyi J., Vandekerckhove H., Vinereanu D., Voors A.A., Yilmaz M.B., Zannad F., Sharpsten L., Legg J.C., Varin C., Honarpour N., Abbasi S.A., Malik F.I., Kurtz C.E. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med., 2021; 384 (2): 105–116. doi: 10.1056/NEJMoa2025797

45. Wintrich J., Kindermann I., Ukena C., Selejan S., Werner C., Maack C., Laufs U., Tschöpe C., Anker S.D., Lam C.S.P., Voors A.A., Böhm M. Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. Clin. Res. Cardiol., 2020; 109 (9): 1079–1098. doi: 10.1007/s00392-020-01633-w

46. Zeppenfeld K., Tfelt-Hansen J., de Riva M., Winkel B.G., Behr E.R., Blom N.A., Charron P., Corrado D., Dagres N., de Chillou C., Eckardt L., Friede T., Haugaa K.H., Hocini M., Lambiase P.D., Marijon E., Merino J.L., Peichl P., Priori S.G., Reichlin T., ESC Scientific Document Group. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. European Heart Journal, 2022; 43 (40): 3997–4126. doi: 10.1093/eurheartj/ehac262

47. Bristow M.R., Saxon L.A., Boehmer J., Krueger S., Kass D.A., de Marco T., Carson P., DiCarlo L., DeMets D., White B.G., DeVries D.W., Feldman A.M. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med., 2004; 350 (21): 2140–2150. doi: 10.1056/NEJMoa032423

48. Goldenberg I., Kutyifa V., Klein H.U., Cannom D.S., Brown M.W., Dan A., Daubert J.P., Estes N.A. 3rd, Foster E., Greenberg H., Kautzner J., Klempfner R., Kuniss M., Merkely B., Pfeffer M.A., Quesada A., Viskin S., McNitt S., Polonsky B., Ghanem A., Moss A.J. Survival with cardiac-resynchronization therapy in mild heart failure. N. Engl. J. Med., 2014; 370 (18): 1694–1701. doi: 10.1056/NEJMoa1401426

49. Moss A.J., Hall W.J., Cannom D.S., Klein H., Brown M.W., Daubert J.P., Estes N.A. 3rd, Foster E., Greenberg H., Higgins S.L., Pfeffer M.A., Solomon S.D., Wilber D., Zareba W. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med., 2009; 361 (14): 1329–1338. doi: 10.1056/NEJMoa0906431

50. Tang A.S., Wells G.A., Talajic M., Arnold M.O., Sheldon R., Connolly S., Hohnloser S.H., Nichol G., Birnie D.H., Sapp J.L., Yee R., Healey J.S., Rouleau J.L. Cardiac-resynchronization therapy for mildto-moderate heart failure. N. Engl. J. Med., 2010; 363 (25): 2385–2395. doi: 10.1056/NEJMoa1009540

51. St John Sutton M., Cerkvenik J., Borlaug B.A., Daubert C., Gold M.R., Ghio S., Chirinos J.A., Linde C., Ky B. Effects of cardiac resynchronization therapy on cardiac remodeling and contractile function: results from Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE). J. Am. Heart Assoc., 2015: 4 (9): e002054. doi: 10.1161/JAHA.115.002054

52. Wells G., Parkash R., Healey J.S., Talajic M., Arnold J.M., Sullivan S., Peterson J., Yetisir E., Theoret- Patrick P., Luce M., Tang A.S. Cardiac resynchronization therapy: a meta-analysis of randomized controlled trials. CMAJ, 2011; 183 (4): 421–429. doi: 10.1503/cmaj.101685

53. RECOVER Study Investigators. Cardiac resynchronization therapy in elderly heart failure patients: Results from the RECOVER study. J. Am. Coll. Cardiol., 2023; 81 (9): 870–881.

54. Nazar W., Szymanowicz S., Nazar K., Kaufmann D., Wabich E., Braun-Dullaeus R., Daniłowicz-Szymanowicz L. Artificial intelligence models in prediction of response to cardiac resynchronization therapy: a systematic review. Heart Failure Reviews, 2024; 29 (1), 133–150. doi: 10.1007/s10741-023-10357-8

55. Nagai T., Suzuki J., Komuro I. Biomarkers and genetic predictors of CRT response. Eur. J. Heart. Fail., 2023; 25 (2): 317–325.

56. Cleland J.G., Daubert J.C., Erdmann E., Freemantle N., Gras D., Kappenberger L., Tavazzi L., Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med., 2005; 352 (15): 1539–1549. doi: 10.1056/NEJMoa050496

57. Sitnikova M.Yu., Lyasnikova E.A., Yurchenko A.V., Trukshina M.A., Kuular A.A., Galenko V.L., Ivanov S.G., Dupliakov D.V., Shlyakhto E.V. Results of three years of the Russian Hospital Heart Failure Registry (RUS-HFR): relationship between management and outcomes in patients with chronic heart failure. Cardiology, 2018; 58 (10S): 9–19 (In Russ.). doi: 10.18087/cardio.2483

58. Moss A.J., Zareba W., Hall W.J., Klein H., Wilber D.J., Cannom D.S., Daubert J.P., Higgins S.L., Brown M.W., Andrews M.L. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med., 2002; 346 (12): 877–883. doi: 10.1056/NEJMoa013474

59. Bardy G.H., Lee K.L., Mark D.B., Poole J.E., Packer D.L., Boineau R., Domanski M., Troutman C., Anderson J., Johnson G., McNulty S.E., Clapp-Channing N., Davidson-Ray L.D., Fraulo E.S., Fishbein D.P., Luceri R.M., Ip J.H. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med., 2005; 352 (3): 225–237. doi: 10.1056/NEJMoa043399

60. Al-Khatib S.M., Fonarow G.C., Joglar J.A., Inoue L.Y.T., Mark D.B., Lee K.L., Kadish A., Bardy G., Sanders, G.D. Primary prevention implantable cardioverter defibrillators in patients with nonischemic cardiomyopathy: A meta-analysis. JAMA Сardiol., 2017; 2 (6): 685–688. doi: 10.1001/jamacardio.2017.0630

61. Bennett M.T., Brown M.L., Koehler J., Lexcen D.R., Cheng A., Cheung J.W. Trends in implantable cardioverter- defibrillator programming practices and its impact on therapies: Insights from a North American Remote Monitoring Registry 2007–2018. Heart Rhythm, 2022; 19 (2): 219–225. doi: 10.1016/j.hrthm.2021.10.010

62. Xanthopoulos A., Skoularigis J., Triposkiadis F. The neurohormonal overactivity syndrome in heart failure. Life, 2023; 13 (1): 250. doi: 10.3390/life13010250

63. Mehra M.R., Uriel N., Naka Y., Cleveland J.C. Jr, Yuzefpolskaya M., Salerno C.T., Walsh M.N., Milano C.A., Patel C.B., Hutchins S.W., Ransom J., Ewald G.A., Itoh A., Raval N.Y., Silvestry S.C., Cogswell R., John R., Bhimaraj A., Bruckner B.A., Lowes B.D., MOMENTUM 3 Investigators. A Fully Magnetically Levitated Left Ventricular Assist Device – final report. N. Engl. J. Med., 2019; 380 (17): 1618–1627. doi: 10.1056/NEJMoa1900486

64. Sidhu K., Lam P.H., Mehra M.R. Evolving trends in mechanical circulatory support: Clinical development of a fully magnetically levitated durable ventricular assist device. Trends Cardiovasc. Med., 2020; 30 (4): 223–229. doi: 10.1016/j.tcm.2019.05.013

65. Shekar K., Gregory S.D., Fraser J.F. Mechanical circulatory support in the new era: an overview. Critical Care (London), 2016; 20: 66. doi: 10.1186/s13054-016-1235-3

66. Boulet J., Wanderley M.R.B. Jr., Mehra M.R. Contemporary left ventricular assist device therapy as a bridge or alternative to transplantation. Transplantation, 2024; 108 (6): 1333–1341. doi: 10.1097/TP.0000000000004834

67. Ouyang D., He B., Ghorbani A., Yuan N., Ebinger J., Langlotz C.P., Heidenreich P.A., Harrington R.A., Liang D.H., Ashley E.A., Zou J.Y. Video-based AI for beat-to-beat assessment of cardiac function. Nature, 2020; 580 (7802): 252–256. doi: 10.1038/s41586-020-2145-8

68. Desai A.S., Bhimaraj A., Bharmi R., Jermyn R., Bhatt K., Shavelle D., Redfield M.M., Hull R., Pelzel J., Davis K., Dalal N., Adamson P.B., Heywood J.T. Ambulatory Hemodynamic Monitoring Reduces Heart Failure Hospitalizations in “Real-World” clinical practice. J. Am. Coll. Cardiol., 2017; 69 (19): 2357–2365. doi: 10.1016/j.jacc.2017.03.009

69. Lindenfeld J., Zile M.R., Desai A.S., Bhatt K., Ducharme A., Horstmanshof D., Krim S.R., Maisel A., Mehra M.R., Paul S., Sears S.F., Sauer A.J., Smart F., Zughaib M., Castaneda P., Kelly J., Johnson N., Sood P., Ginn G., Henderson J., Adamson P.B., Costanzo M.R. Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. Lancet, 2021; 398 (10304): 991–1001. doi: 10.1016/S0140-6736(21)01754-2

70. Zhang J., Gajjala S., Agrawal P., Tison G.H., Hallock L.A., Beussink-Nelson L., Lassen M.H., Fan E., Aras M.A., Jordan C., Fleischmann K.E., Melisko M., Qasim A., Shah S.J., Bajcsy R., Deo R.C. Fully automated echocardiogram interpretation in clinical practice. Circulation, 2018; 138 (16): 1623–1635. doi: 10.1161/CIRCULATIONAHA.118.034338

71. Kwon J.M., Kim K.H., Jeon K.H., Lee S.Y., Park J., Oh B.H. Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography. Scand. J. Trauma Resusc. Emerg. Med., 2020; 28 (1): 98. doi: 10.1186/s13049-020-00791-0

72. Shameer K., Johnson K.W., Glicksberg B.S., Dudley J.T., Sengupta P.P. Machine learning in cardiovascular medicine: are we there yet? Heart, 2018; 104 (14): 1156–1164. doi: 10.1136/heartjnl-2017-311198

73. Tran J.S., Wolfson A.M., O’Brien D., Yousefian O., Shavelle D.M. A systems-based analysis of the CardioMEMS HF Sensor for chronic heart failure management. Cardiol. Res. Pract., 2019; 2019: 7979830. doi: 10.1155/2019/7979830

74. Shah S.J., Katz D.H., Selvaraj S., Burke M.A., Yancy C.W., Gheorghiade M., Bonow R.O., Huang C.C., Deo R.C. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation, 2015; 131 (3): 269–279. doi: 10.1161/CIRCULATIONAHA.114.010637

75. Budnevsky A.V., Simion A.Yu., Shapovalova M.M. Pathophysiology of anemic syndrome in cardiovascular diseases. Science of the Young (Eruditio Juvenium), 2021; 9 (2): 301–312. (In Russ.). doi: 10.23888/HMJ202192301-312

76. Tkachenko E.I., Borovkova N.Yu., Borovkov N.N., Bakka T.E. Levels of pro-inflammatory cytokines and hepcidin in anemia in patients with chronic heart failure. Therapy, 2021; 7 (2): 56–65 (In Russ.). doi: 10.18565/therapy.2021.2.56-65

77. Sidoruk S.P., Petrova E.B., Mitkovskaya N.P. Anemia in cardiovascular diseases. Emergency Cardiology and Cardiovascular Risks, 2017; 1 (1): 38–45 (In Russ.).

78. Adyan T.A., Polyakov A.V. Hereditary transthyretin amyloidosis. Neuromuscular Diseases, 2019; 9 (4): 12–25 (In Russ.). doi: 10.17650/2222-8721-2019-9-4-12-25

79. Shulpekova Yu.O., Baranov S.A., Nechaev V.M., Supryaga I.V., Yakushina I.I., Garaeva A.S. Amyloid cardiopathy: clinical significance and diagnostics. Medical Bulletin of the North Caucasus, 2022; 17 (1): 78–80 (In Russ.). doi: 10.14300/mnnc.2022.17022

80. Shin J., Johnson J.A. Beta-blocker pharmacogenetics in heart failure. Heart Failure Reviews, 2010; 15 (3): 187–196. doi: 10.1007/s10741-008-9094-x

81. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., Cleland J.G.F., Coats A.J.S., Crespo-Leiro M.G., Farmakis D., Gilard M., Heymans S., Hoes A.W., Jaarsma T., Jankowska E.A., ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail., 2022; 24 (1): 4–131. doi: 10.1002/ejhf.2333

82. van Veldhuisen D.J., Anker S.D., Ponikowski P., Macdougall I.C. Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat. Rev. Cardiol., 2011; 8 (9): 485–493. doi: 10.1038/nrcardio.2011.77

83. Garcia-Pavia P., Rapezzi C., Adler Y., Arad M., Basso C., Brucato A., Burazor I., Caforio A.L.P., Damy T., Eriksson U., Fontana M., Gillmore J.D., Gonzalez-Lopez E., Grogan M., Heymans S., Imazio M., Kindermann I., Kristen A.V., Maurer M.S., Merlini G., Pantazis A., Pankuweit S., Rigopoulos A.G., Linhart A. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J., 2021; 42 (16): 1554–1568. doi: 10.1093/eurheartj/ehab072

84. Kittleson M.M., Maurer M.S., Ambardekar A.V., Bullock-Palmer R.P., Chang P.P., Eisen H.J., Nair A.P., Nativi-Nicolau J., Ruberg F.L. Cardiac amyloidosis: evolving diagnosis and management: A Scientific Statement From the American Heart Association. Circulation, 2020; 142 (1): e7–e22. doi: 10.1161/CIR.0000000000000792

85. Fontana M., Pica S., Reant P., Abdel-Gadir A., Treibel T.A., Banypersad S.M., Maestrini V., Barcella W., Rosmini S., Bulluck H., Sayed R.H., Patel K., Mamhood S., Bucciarelli-Ducci C., Whelan C.J., Herrey A.S., Lachmann H.J., Wechalekar A.D., Manisty C.H., Schelbert E.B., Kellman P., Gillmore J.D., Hawkins P.N., Moon J.C. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation, 2015; 132 (16): 1570–1579. doi: 10.1161/CIRCULATIONAHA.115.016567


Review

For citations:


Yurkovskiy A.O., Lozhkina N.G., Artemenko S.N. Chronic heart failure: from pathogenesis to personalized therapy and digital technologies. Ateroscleroz. 2025;21(3):340-361. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-3-340-361

Views: 56


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)