Preview

Ateroscleroz

Advanced search

Cardiometabolic risk factors and osteoporotic fractures in people aged over 50 years (Novosibirsk)

https://doi.org/10.52727/2078-256X-2025-21-3-296-308

Abstract

Aim. To study the associations between cardiometabolic risk factors (CRF) and osteoporotic fractures (OF) in a population sample aged over 50 years.
Materials and methods. The cross-sectional study was based on Russian part of the HAPIEE Project (Novosibirsk, 2003–2005). This analysis included 7363 men and women 50–69 years old. We collected information on the OF over the past 12 months using a standard questionnaire, we assessed socio-demographic parameters and the main CRF (obesity, hyperglycemia, dyslipidemia, menopause duration in women, smoking, alcohol consumption), and taking of hormone replacement therapy in postmenopausal women. The analysis of associations between CRF and the chance of OF was performed.
Results. The frequency of OF over the past 12 months was 3.6 % (3.2 % in men and 4.0 % in women, p = 0.074). The risk of fracture was directly associated with blood pressure, HDL cholesterol, and ethanol consumption of more than 30 g per 1 session, and it was inversely associated with BMI among men. In women, the chance of a fracture was directly associated with current smoking, an increase in the menopause duration and inversely associated with TG level independent of other factors.
Conclusion. Among the examined persons over 50 years of age, we reveled the syndemia of CRF in relation to OF risk in men, the chance of OF has positive association with an increase of blood pressure and HDL-C levels, ethanol consumption of more than 30 g per session and negative association with BMI value; in women, the chance of fracture positively associated with current smoking, postmenopausal duration, and negatively associated with TG level, regardless of other factors. The data obtained make it possible to speak of significant links between CRF and OF.

About the Authors

E. S. Mazurenko
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Elena S. Mazurenko, candidate of medical sciences, researcher

175/1, Boris Bogatkov st., Novosibirsk, 630089



O. D. Rymar
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Oksana D. Rymar, doctor of medical sciences, chief researcher, head of the laboratory of clinical-population and preventive research of therapeutic and endocrine

175/1, Boris Bogatkov st., Novosibirsk, 630089



L. V. Shcherbakova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Liliya V. Shcherbakova, senior researcher

175/1, Boris Bogatkov st., Novosibirsk, 630089



A. O. Direev
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Artem O. Direev, candidate of medical sciences, junior researcher

175/1, Boris Bogatkov st., Novosibirsk, 630089



V. N. Chursina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Veronika N. Chursina, resident

175/1, Boris Bogatkov st., Novosibirsk, 630089



S. K. Malyutina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Sofia K. Malyutina, doctor of medical sciences, professor, head of the laboratory of etiopathogenesis and clinics of internal diseases

175/1, Boris Bogatkov st., Novosibirsk, 630089



References

1. Lesnyak O.M. Audit of the state of the problem of osteoporosis in the countries of Eastern Europe and Central Asia 2010. Osteoporosis and Osteopathy, 2011; 14 (2): 3–6. (In Russ.). doi: 10.14341/osteo201123-6

2. Khosla S., Hofbauer L.C. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol., 2017; 5 (11): 898–907. doi: 10.1016/S2213-8587(17)30188-2

3. Mazurenko E.S., Malyutina S.K., Shcherbakova L.V., Mustafina S.V., Nikitenko Т.М., Bobak M., Rymar O.D. The forearm fractures in patients with diabetes and without diabetes in population sample aged over 50 years (Novosibirsk). Problems of Endocrinology, 2019; 65 (2): 79–88. doi: 10.14341/probl9799

4. Mazurenko E., Rymar O., Rerikh V., Khrapova Y., Direev A., Shcherbakova L., Malyutina S. Risk factors for chronic non-communicable diseases and osteoporotic fractures in a middle and elderly-aged population. J. Pers. Med., 2022; 12: 1475. doi: 10.3390/jpm12091475

5. Li C., Zeng, Y., Tao L., Liu S., Ni Z., Huang Q., Wang Q. Meta-analysis of hypertension and osteoporotic fracture risk in women and men. Osteoporos Int., 2017; 28: 2309–2318. doi: 10.1007/s00198-017-4050-z

6. Renjithlal S., Magdi M., Mostafa M., Renjith K., Pillai P., Syed M., Mohamed S., Zahid V., Ritter N., Al Ali O., Balmer-Swain M., Makaryus A., Pillai N. Bone mineral density as a predictor of cardiovascular disease in women: a real-world retrospective study. J. Endocrinol. Metab., 2022; 12 (4-5): 125–133 doi: 10.14740/jem840

7. Li G., Cheung C., Au P., Tan K., Wong I., Sham P. Positive effects of low LDL-C and statins on bone mineral density: an integrated epidemiological observation analysis and Mendelian randomization study. Int. J. Epidemiol., 2020; 49 (4): 1221–1235. doi: 10.1093/ije/dyz145

8. Zhao J., Liang G., Luof M., Yang W., Xua N., Luo M., Pan J., Liu J., Zeng L. Influence of type 2 diabetes microangiopathy on bone mineral density and bone metabolism: A meta-analysis. Heliyon, 2022; 8 (10): e11001. doi: 10.1016/j.heliyon.2022.e11001

9. Mazurenko E.S., Malyutina S.K., Shcherbakova L.V., Khrapova Yu.V., Isaeva М.P., Rymar O.D. 10-year risk of fractures (FRAX) in people with diabetes type 2 in the elderly. Therapeutic Archive, 2019; 91 (10): 76–81. (In Russ.). doi: 10.26442/00403660.2019.10.000113

10. Munz I.V., Direev A.O., Verevkin E.G., Mezentsev E.M., Shapkina M.Yu., Avdeeva E.M., Mazurenko E.S., Bobak M., Malyutina S.K., Ryabikov A.N. The comorbidity of cardiovascular and non-communicable diseases with ophthalmologic diseases in population. Klin. Med., 2019; 97 (1): 18–25 (In Russ.). doi: 10.34651/0023-2149-2019-97-1-18-25

11. Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Pikhart H., Nicholson A., Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health, 2006; 6: 255. doi: 10.1186/1471-2458-6-255

12. Tevik K., Bergh S., Selbæk G., Johannessen A., Helvik A.S. A systematic review of self-report measures used in epidemiological studies to assess alcohol consumption among older adults. PLoS One, 2021; 16 (12): e0261292. doi: 10.1371/journal.pone.0261292

13. World Health Organization. Department of Noncommunicable Disease Management. Screening for Type 2 Diabetes Report of a World Health Organization and International Diabetes Federation meeting. Geneva, 2003.

14. Hiligsmann M., Kanis J.A., Compston J., Cooper С., Flamion B., Bergmann P., Body J.J., Boonen S., Bruyere O., Devogelaer J.P., Goemaere S., Kaufman J.M., Rozenberg S., Reginster J.Y. Health technology assessment in osteoporosis. Calcif. Tissue Int., 2013; 93 (1): 1–14. doi: 10.1007/s00223-013-9724-8

15. Gladkova E.N., Khodyrev V.N., Lesnyak O.M. An episrmiological survey of osteoporotic fractures in older residents from the Middle Urals. Rheumatol. Sci. Pract., 2014; 52 (6): 643–649. (In Russ.). doi: 10.14412/1995-4484-2014-643-649

16. Ghorabi S., Shab-Bidar S., Sadeghi O., Nasiri M., Khatibi S.R., Djafarian K. Lipid profile and risk of bone fracture: a systematic review and meta-analysis of observational studies. Endocr. Res., 2019; 44 (4): 168–184. doi: 10.1080/07435800.2019.1625057

17. Chen Y.Y., Wang W.W., Yang L., Chen W.W., Zhang H.X. Association between lipid profiles and osteoporosis in postmenopausal women: a meta-analysis. Eur. Rev. Med. Pharmacol. Sci., 2018; 22 (1): 1–9. doi: 10.26355/eurrev_201801_14093

18. Chen X., Zhang L., Wang X., Cao H., Liu Sh., Wang Y. Impact of cardiovascular risk factors on osteoporosis among different age patients with coronary artery disease. J. Res. Cardiol., 2016 (2016): Article ID 307728. doi: 10.5171/2016.30772

19. Hussain S.M., Ebeling P.R., Barker A.L., Beilin L.J., Tonkin A.M., McNeil J.J. Association of plasma high-density lipoprotein cholesterol level with risk of fractures in healthy older adults. JAMA Cardiol., 2023; 8 (3): 268–272. doi: 10.1001/jamacardio.2022.5124

20. Ahmed L.A., Schirmer H., Berntsen G.K., Fønnebø V., Joakimsen R.M. Features of the metabolic syndrome and the risk of non-vertebral fractures: the Tromsø study. Osteoporos Int., 2006; 17 (3): 426–432. doi: 10.1007/s00198-005-0003-z

21. Kha H.T., Basseri B., Shouhed D., Richardson J., Tetradis S., Hahn T.J., Parhami F. Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner. Res., 2004; 19: 830–840. doi: 10.1359/JBMR.040115

22. Parhami F., Morrow A.D., Balucan J., Leitinger N., Watson A.D., Tintut Y., Berliner J.A., Demer L.L. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler. Thromb. Vasc. Biol., 1997; 17 (4): 680–687. doi: 10.1161/01.atv.17.4.680

23. Papachristou N.I., Blair H.C., Kypreos K.E., Papachristou D.J. High-density lipoprotein (HDL) metabolism and bone mass. J. Endocrinol., 2017; 233 (2): R95–R107. doi: 10.1530/JOE-16-0657

24. Chen G.C., Qin L.Q., Ye J.K. Leptin levels and risk of type 2 diabetes: gender-specific meta-analysis. Obes. Rev., 2014; 15 (2): 134–142. doi: 10.1111/obr.12088

25. Schrieks I.C., Heil A.L., Hendriks H.F., Mukamal K.J., Beulens J.W. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care, 2015; 38 (4): 723–732. doi: 10.2337/dc14-1556

26. Sözen T., Özışık L., Başaran N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol., 2017; 4 (1): 46–56. doi: 10.5152/eurjrheum.2016.048

27. Huang Y., Ye J. Association between hypertension and osteoporosis: a population-based cross-sectional study. BMC Musculoskelet Disord., 2024; 25 (1): 434. doi: 10.1186/s12891-024-07553-4

28. Jin H., Zhao H., Jin S., Yi X., Liu X., Wang C., Zhang G., Pan J. Menopause modified the association of blood pressure with osteoporosis among gender: a large-scale cross-sectional study. Front. Public Health, 2024; 12: 1383349. doi: 10.3389/fpubh.2024.1383349

29. Turcotte A.F., O’Connor S., Morin S.N., Gibbs J.C., Willie B.M., Jean S., Gagnon C. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: A systematic review and meta-analysis. PLoS One, 2021; 16 (6): e0252487. doi: 10.1371/journal.pone.0252487

30. Armutcu F., McCloskey E. fracture risk assessment in metabolic syndrome in terms of secondary osteoporosis potential. A narrative review. Calcif. Tissue Int., 2025: 20; 116 (1): 41. doi: 10.1007/s00223-025-01341-5

31. Mazurenko E.S. Fall risk factors as predictors of osteoporotic fractures in people with diabetes mellitus. Medical Council, 2019; (4): 104–107. (In Russ.). doi: 10.21518/2079-701X-2019-4-104-107

32. Mazurenko E.S., Malyutina S.K., Shcherbakova L.V., Ragino Yu.I., Rymar O.D. Risk factors for osteoporotic fractures of the distal forearm in postmenopausal women in the Novosibirsk population. Pract. Med., 2018; 16 (9): 174–179 (In Russ.). doi: 10.32000/2072-1757-2018-9-174-179


Review

For citations:


Mazurenko E.S., Rymar O.D., Shcherbakova L.V., Direev A.O., Chursina V.N., Malyutina S.K. Cardiometabolic risk factors and osteoporotic fractures in people aged over 50 years (Novosibirsk). Ateroscleroz. 2025;21(3):296-308. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-3-296-308

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)