Preview

Ateroscleroz

Advanced search

The role of polysaccharide polymers in the regulation of angiogenesis and atherogenic inflammation in the vascular wall. Literature review. Part 2

https://doi.org/10.52727/2078-256X-2025-21-2-180-203

Abstract

The aim of the study. To determine the therapeutic possibilities of local activation of angiogenesis and degradation of atherogenic inflammation during reconstruction of arterial wall layers under conditions of wide implantation of polysaccharide polymers in the para-adventitial zone. The concept of the analytical review is based on the hypothesis of improving the balance between pro-inflammatory and atheroprotective cytokine growth factors when using biopolymers. Materials and methods. The analysis of the literature indicates an active direct intervention in the reconstruction of the adventitial layer of the arterial wall using polysaccharide hydrogels with a high affinity for cholesterol, conditions are created for the formation of an additional extracellular matrix outside the intimal and middle zones of the main artery and the reversal of the cholesterol mass from the intimal zone to the paraadventitial space. The creation of productive inflammation in the adventitial zone using biopolymers can be one of the effective ways to degrade early soft atherogenic plaques. Publications indicate the possibility of extracting soft atherogenic plaques from the intimal space of major arteries by wide implantation of polysaccharide hydrogels into the fascial sheath of vessels with the formation of a second-level extracellular matrix. The analysis of literary sources according to the concept was carried out using databases indexed by WoS, Scopus, PubMed, DOAJ, Embase, Ei Compendex mainly for the last 10 years. Results. The literature review allows us to form a modern understanding of the molecular processes occurring in the vessel wall during the development of atherogenic inflammation in an experiment on animals receiving a cholesterol diet, to indicate signs of vascular wall reconstruction with exogenous implantation of biopolymers. Conclusions. In the vascular wall, there is a conjugation of cytokine growth factors with natural or synthetic biomaterials. Immobilized factors will be available to cells that come into contact with the matrix, providing a highly localized signal to control cell fate. Injectable scaffolds are a promising approach for stimulating angiogenesis. Cell migration from the intima and media can be activated by an electrostatic gradient in the presence of a sulfated polymer and lead to the formation of affinity complexes with cholesterol. The high affinity of polysaccharide polymers for cholesterol and LDL, active vascularization of the additional extracellular matrix provoke a gradient of cholesterol translation towards the hydrogel “shirt”. The effect of cholesterol outflow can provide a new therapeutic approach to the pathology of the main vessels.

About the Authors

I. N. Bolshakov
Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky of Ministry of Health of Russian Federation
Russian Federation

Igor N. Bolshakov, doctor of medical sciences, professor of the operative surgery and topographic anatomy department

1, Partizana Zheleznyaka st., Krasnoyarsk, 660022



D. V. Shindyakin
Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky of Ministry of Health of Russian Federation
Russian Federation

Dmitry V. Shindyakin, student of the pediatric faculty

1, Partizana Zheleznyaka st., Krasnoyarsk, 660022



A. K. Kirichenko
Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky of Ministry of Health of Russian Federation
Russian Federation

Andrey K. Kirichenko, doctor of medical sciences, professor of the pathological anatomy department

1, Partizana Zheleznyaka st., Krasnoyarsk, 660022



V. A. Bahshyan
Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky of Ministry of Health of Russian Federation
Russian Federation

Valentina A. Bahshyan, student of the faculty of medicine

1, Partizana Zheleznyaka st., Krasnoyarsk, 660022



S. V. Arkhipkin
Krasnoyarsk State Medical University named after Prof. V.F.Voino-Yasenetsky of Ministry of Health of Russian Federation
Russian Federation

Sergey V. Arkhipkin, senior lecturer of operative surgery and topographic anatomy department

1, Partizana Zheleznyaka st., Krasnoyarsk, 660022



References

1. Andrés V., Pello O.M., Silvestre-Roig C. Macrophage proliferation and apoptosis in atherosclerosis. Curr. Opin Lipidol., 2012; 23 (5): 429–438. doi: 10.1097/ MOL.0b013e328357a379

2. Shirai T., Hilhorst M., Harrison D.G., Goronzy J.J., Weyand C.M. Macrophages in vascular inflammation-From atherosclerosis to vasculitis. Autoimmunity, 2015; 48 (3): 139–151. doi: 10.3109/08916934.2015.1027815

3. Bolshakov I.N., Gornostaev L.M., Fominykh O.I., Svetlakov A.V. Synthesis, chemical and biomedical aspects of the use of sulfated chitosan. Polymers (Basel), 2022; 14 (16): 3431. doi: 10.3390/polym14163431

4. Park I., Kassiteridi C., Monaco C. Functional diversity of macrophages in vascular biology and disease. Vascul. Pharmacol., 2017: 99: 13–22. doi: 10.1016/j.vph.2017.10.005

5. Zhang H., Tian Yi., Ren Ya., Wang Ya., Wang C., Hou L. Shear force and cholesterol affinity responsive drug delivery system for treating inflammation and abnormal lipid metabolism in atherosclerosis. J. Control. Release, 2025: 381: 113633. doi: 10.1016/j. jconrel.2025.113633

6. Большаков И.Н., Шестакова Л.А., Котиков А.Р., Каптюк Г.И. Экспериментальный атеросклероз у крыс. Морфологическая реконструкция стенки магистральной артерии полисахаридными биополимерами. Фундам. исслед., 2013; 10 (3): 557–563. [Bolshakov I.N., Shestakova L.A., Kotikov A.R., Kaptyuk G.I. Experimental atherosclerosis in rats. Morphological reconstruction of the main artery wall with the polysaccharide biopolymers. Fundamental Research, 2013; 10 (3): 557–563. (In Russ.)].

7. O'Rourke S.A., Dunne A., Monaghan M.G.. The role of macrophages in the infarcted myocardium: orchestrators of ECM remodeling. Front. Cardiovasc. Med., 2019; 6: 101. doi:10.3389/fcvm.2019.00101

8. Heidt T., Courties G., Dutta P., Sager H.B., Sebas M., Iwamoto Y., Sun Yu., Da Silva N., Panizzi P., van der Laan A.M., Swirski F.K., Weissleder R., Nahrendorf M. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res., 2014; 115: 284–295. doi: 10.1161/CIRCRESAHA.115.303567

9. Imam S.S., Alshehri S., Altamimi M.A., Almalki R.K.H., Hussain A., Bukhari S.I., Mahdi W.A., Qamar W. Formulation of chitosan-coated apigenin bilosomes: in vitro characterization, antimicrobial and cytotoxicity assessment. Polymers (Basel), 2022; 14 (5): 921. doi: 10.3390/polym14050921

10. Nguyen M.A., Wyatt H., Susser L., Geoffrion M., Rasheed A., Duchez A.C., Cottee M.L., Afolayan E., Farah E., Kahiel Z., Côté M., Gadde S., Rayner K.J.. Delivery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano, 2019; 13: 6491–6505. doi: 10.1021/acsnano.8b09679

11. Sriamornsak P., Dass C.R. Chitosan nanoparticles in atherosclerosis – development to preclinical testing. Pharmaceutics, 2022; 14: 935. doi: 10.3390/ pharmaceutics14050935

12. Benettayeb A., Seihoub F.Z., Pal P., Ghos S.H, Usman M., Chia C.H., Usman M., Sillanpää M. Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants. Nanomaterials (Basel), 2023;13:447. doi: 10.3390/nano13030447

13. Rice J.J., Martino M.M., de Laporte L., Tortelli F., Briquez P.S., Hubbell J.A. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc Mater., 2013; 2 (1): 57–71. doi: 10.1002/ adhm.201200197

14. Moulisová V., Gonzalez-García C., Cantini M., Rodrigo-Navarro A., Weaver J., Costell M., Sabater I., Serra R., Dalby M.J., García A.J., SalmerуnSánchez M. Engineered microenvironments for synergistic VEGF – Integrin signalling during vascularization. Biomaterials, 2017; 126: 61–74. doi: 10.1016/j.biomaterials.2017.02.024

15. Mitragotri S., Lahann J. Physical approaches to biomaterial design. Nat. Mater., 2009; 8: 15–23. doi: 10.1038/nmat2344

16. Le M.P.T., Marasinghe C.K., Je Ja.-Yo. Chitosan oligosaccharides: A potential therapeutic agent for inhibiting foam cell formation in atherosclerosis. Int. J. Biol. Macromol., 2024; 282 (Pt 4): 137186. doi: 10.1016/j.ijbiomac.2024.137186

17. Shahbaz U. Chitin, characteristic, sources, and biomedical application. Curr. Pharm. Biotechnol., 2020; 21: 1433–1443. doi: 10.2174/138920102166620 0605104939

18. Wang W., Meng Q., Li Q., Liu J., Zhou M., Jin Z., Zhao K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020; 21 (487). doi: 10.3390/ijms21020487

19. Yuan X., Zheng J., Jiao S., Cheng G., Feng C., Du Y., Liu H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr. Polym., 2019; 220: 60–70. doi: 10.1016/j. carbpol.2019.05.050

20. Li Qi., Shi W.R., Huang Yu.L. Comparison of the protective effects of chitosan oligosaccharides and chitin oligosaccharide on apoptosis, inflammation and oxidative stress. Exp. Ther. Med., 2024; 28 (2): 310. doi: 10.3892/etm.2024.12600

21. Cavalcante M.F., Adorne M.D., Turato W.M., Kemmerer M., Uchiyama M.K., Asbahr A.C.C., Alves A.D.C.S., Farsky S.H.P., Drewes C., Spatti M.C., Kazuma S.M., Boss M., Guterres S.S., Araki K., Brüne B., Namgaladze D., Pohlmann A.R., Abdalla D.S.P. scFv-Anti-LDL(-)-metal-complex multi-wall functionalized-nanocapsules as a promising tool for the prevention of atherosclerosis progression. Front. Med., 2021; 8: 652137. doi: 10.3389/ fmed.2021.652137

22. Barc P., Plonek T., Baczynska D., Radwanska A., Witkiewicz W., Halon A., Kupczynska-Markiewicz D., Strozecki L., Korta K., Skora J. A combination of VEGF165/HGF genes is more effective in blood vessels formation than ANGPT1/VEGF165 genes in an in vivo rat model. Int. J. Clin. Exp. Med., 2016; 9: 12737–12744.

23. Makarevich P.I., Boldyreva M.A., Gluhanyuk E.V., Efimenko A.Y., Dergilev K.V., Shevchenko E.K., Sharonov G.V., Gallinger J.O., Rodina P.A., Sarkisyan S.S., Hu Y.C., Parfyonova Y.V. Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirustransduced adipose-derived stromal cells expressing VEGF165. Stem. Cell. Res. Ther., 2015; 6: 204. doi: 10.1186/s13287-015-0199-6

24. Vemulapalli S., Patel M.R., Jones W.S. Limb ischemia: cardiovascular diagnosis and management from head to toe. Curr. Cardiol. Rep., 2015; 17: 611. doi: 10.1007/s11886-015-0611-y

25. Cooke J.P., Losordo D.W. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ. Res., 2015; 116: 1561–1578. doi: 10.1161/CIRCRESAHA.115.303565

26. Curry C.W., Sturgeon S.M., O'Grady B.J., Yates A., Kjar A., Paige H., Mowery L.S., Katdare K.A., Patel R., Mlouk K., Stiefbold M.R., Vafaie-Partin S., Kawabata A., McKee R., Moore-Lotridge S., Hawkes A., Kusunose J., Gibson-Corley K.N., Schmeckpeper J., Schoenecker J.G., Caskey C.F., Lippmann E.S. Growth factor free, peptidefunctionalized gelatin hydrogel promotes arteriogenesis and attenuates tissue damage in a murine model of critical limb ischemia. Biomaterials, 2023; 303: 122397. doi: 10.1016/j.biomaterials.2023.122397

27. King W.J., Krebsbach P.H. Growth factor delivery: how surface interactions modulate release in vitro and in vivo. Adv. Drug. Deliv. Rev., 2012; 64 (12): 1239– 1256. doi: 10.1016/j.addr.2012.03.004

28. Nicosia A., Salamone M., Costa S., Ragusa M.A., Ghersi G. Mimicking molecular pathways in the design of smart hydrogels for the design of vascularized engineered tissues. Int. J. Mol. Sci., 2023; 24 (15): 12314. doi: 10.3390/ijms241512314

29. Aravamudhan A., Ramos D.M., Nip J., Subramanian A., James R., Harmon M.D., Yu X., Kumbar S.G. Osteoinductive small molecules: growth factor alternatives for bone tissue engineering. Curr. Pharm. Des., 2013; 19 (19): 3420–3428. doi: 10.2174/1381612811319190008

30. Simуn-Yarza T., Formiga F.R., Tamayo E., Pelacho B., Prosper F., Blanco-Prieto M.J. Vascular endothelial growth factor-delivery systems for cardiac repair: an overview. Theranostics, 2012; 2 (6): 541–552. doi: 10.7150/thno.3682

31. Foster G.A., Headen D.M., González-García C., Salmerón-Sánchez M., Shirwan H., García A.J. Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 2017; 113: 170–175. doi: 10.1016/j.biomaterials.2016.10.044

32. Yao S., Yang Y., Wang X., Wang L. Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres. Macromol. Res., 2017; 25: 528–533. doi: 10.1007/s13233-017-5121-x

33. Murphy W.L., Peters M.C., Kohn D.H., Mooney D.J. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2000; 21 (24): 2521–2527. doi: 10.1016/s0142-9612(00)00120-4

34. Wang Z., Wang Z., Lu W.W., Zhen W., Yang D., Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater., 2017; 9: e435. doi: 10.1038/am.2017.171

35. Ehrbar M., Schoenmakers R., Christen E.H., Fussenegger M., Weber W. Drug-sensing hydrogels for the inducible release of biopharmaceuticals. Nat. Mater., 2008; 7 (10): 800–804. doi: 10.1038/nmat2250

36. Masters K.S. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol. Biosci., 2011; 11 (9): 1149–1163. doi: 10.1002/ mabi.201000505

37. Martino M.M., Briquez P.S., Maruyama K., Hubbell J.A. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv. Drug. Deliv. Rev., 2015; 94: 41–52. doi: 10.1016/j. addr.2015.04.007

38. Naito Y., Shinoka T., Duncan D., Hibino N., Solomon D., Cleary M., Rathore A., Fein C., Church S., Breuer C. Vascular tissue engineering: towards the next generation vascular grafts. Adv. Drug. Deliv. Rev., 2011; 63 (4-5): 312–323. doi: 10.1016/j. addr.2011.03.001

39. Freeman I., Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials, 2009; 30 (11): 2122–2131. doi: 10.1016/j. biomaterials.2008.12.057

40. Freeman I., Kedem A., Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials, 2008; 29 (22): 3260–3268. doi: 10.1016/j. biomaterials.2008.04.025

41. Yu Yu., Dai K., Gao Z., Tang W., Shen T., Yuan Yu., Wang J., Liu C. Sulfated polysaccharide directs therapeutic angiogenesis via endogenous VEGF secretion of macrophages. Sci. Adv., 2021; 7(7): eabd8217. doi: 10.1126/sciadv.abd8217

42. Martino M.M., Brkic S., Bovo E., Burger M., Schaefer D.J., Wolff T., Gürke L., Briquez P.S., Larsson H.M., Gianni-Barrera R., Hubbell J.A., Banfi A. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front. Bioeng. Biotechnol., 2015; 3: 45. doi: 10.3389/fbioe.2015.00045

43. Li H., Shang Yu., Zeng J., Matsusaki M. Technology for the formation of engineered microvascular network models and their biomedical applications. Nano Converg., 2024; 11: 10. doi: 10.1186/s40580-024-00416-7

44. Zhang W., Choi J.K., He Xi. Engineering microvascularized 3D tissue using alginate-chitosan microcapsules. J. Biomater. Tissue Eng., 2017; 7 (2): 170–173. doi: 10.1166/jbt.2017.1547

45. Sommer A., Rifkin D.B. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol., 1989; 138: 215–220.

46. Janse van Rensburg A., Davies N.H., Oosthuysen A., Chokoza C., Zilla P., Bezuidenhout D. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomater., 2017; 49: 89–100. doi: 10.1016/j.actbio.2016.11.036

47. Abdul Sisak M.A., Louis F., Matsusaki M. In vitro fabrication and application of engineered vascular hydrogels. Polym. J., 2020; 52: 871–881. doi: 10.1038/ s41428-020-0331-z

48. Zou D., Zhang Z., He J., Zhang K., Ye D., Han W., Zhou J., Wang Y., Li Q., Liu X., Zhang X., Wang S., Hu J., Zhu C., Zhang W., Zhou Y., Fu H., Huang Y., Jiang X. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials, 2012; 33 (7): 2097– 2108. doi: 10.1016/j.biomaterials.2011.11.053

49. Sun G., Shen Y.I., Kusuma S., Fox-Talbot K., Steenbergen C.J., Gerecht S. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials, 2011; 32 (1): 95–106. doi: 10.1016/j.biomaterials.2010.08.091

50. Bai Y., Bai L., Zhou J., Chen H., Zhang L. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol., 2018; 323: 19–32. doi: 10.1016/j.cellimm.2017.10.008

51. Brudno Y., Ennett-Shepard A.B., Chen R.R., Aizenberg M., Mooney D.J. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and promaturation factors. Biomaterials, 2013; 34 (36): 9201– 9209. doi: 10.1016/j.biomaterials.2013.08.007

52. Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011; 473 (7347): 298–307. doi: 10.1038/nature10144

53. Greenberg J.I., Shields D.J., Barillas S.G., Acevedo L.M., Murphy E., Huang J., Scheppke L., Stockmann C., Johnson R.S., Angle N., Cheresh D.A. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature, 2008; 456 (7223): 809–813. doi: 10.1038/nature07424

54. Nishiguchi A., Yoshida H., Matsusaki M., Akashi M. Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cellaccumulation technique. Adv. Mater., 2011; 23: 3506– 3510. doi: 10.1002/adma.201101787

55. Zamiri P., Masli S., Streilein J.W., Taylor A.W. Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation. Invest. Ophthalmol. Vis. Sci., 2006; 47 (9): 3912–3918. doi: 10.1167/iovs.05-1267

56. Hao X., Silva E.A., Mеnsson-Broberg A., Grinnemo K.H., Siddiqui A.J., Dellgren G., Wärdell E., Brodin L.A., Mooney D.J., Sylvén C. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res., 2007; 75 (1): 178–185. doi: 10.1016/j.cardiores.2007.03.028

57. Chen R.R., Silva E.A., Yuen W.W., Mooney D.J. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res., 2007; 24 (2): 258–264. doi: 10.1007/s11095-0069173-4

58. Nillesen S.T., Geutjes P.J., Wismans R., Schalkwijk J., Daamen W.F., van Kuppevelt T.H. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials, 2007; 28 (6): 1123– 1131. doi: 10.1016/j.biomaterials.2006.10.029

59. Zieris A., Prokoph S., Levental K.R., Welzel P.B., Grimmer M., Freudenberg U., Werner C. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials, 2010; 31 (31): 7985– 7994. doi: 10.1016/j.biomaterials.2010.07.021

60. Hori Y., Ito K., Hamamichi S., Ozawa Y., Matsui J., Umeda I.O., Fujii H. Functional characterization of VEGFand FGF-induced tumor blood vessel models in human cancer xenografts. Anticancer. Res., 2017; 37 (12): 6629–6638. doi: 10.21873/anticanres.12120

61. Khan S., Villalobos M.A., Choron R.L., Chang S., Brown S.A., Carpenter J.P., Tulenko T.N., Zhang P. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. J. Vasc. Surg., 2017; 65 (5): 1483–1492. doi: 10.1016/j.jvs.2016.04.034

62. Gavard J., Patel V., Gutkind J.S. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell., 2008; 14 (1): 25–36. doi: 10.1016/j.devcel.2007.10.019

63. Ngok S.P., Geyer R., Liu M., Kourtidis A., Agrawal S., Wu C., Seerapu H.R., Lewis-Tuffin L.J., Moodie K.L., Huveldt D., Marx R., Baraban J.M., Storz P., Horowitz A., Anastasiadis P.Z. VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. J. Cell. Biol., 2012; 199 (7): 1103–1115. doi: 10.1083/jcb.201207009

64. Hellberg C., Ostman A., Heldin C.H. PDGF and vessel maturation. Recent Results Cancer Res. 2010; 180: 103–114. doi: 10.1007/978-3-540-78281-0_7

65. Anisimov A., Tvorogov D., Alitalo A., Leppänen V.M., An Y., Han E.C., Orsenigo F., Gaál E.I., Holopainen T., Koh Y.J., Tammela T., Korpisalo P., Keskitalo S., Jeltsch M., Ylä-Herttuala S., Dejana E., Koh G.Y., Choi C., Saharinen P., Alitalo K. Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation, 2013; 127 (4): 424–434. doi: 10.1161/ CIRCULATIONAHA.112.127472

66. Nissen L.J., Cao R., Hedlund E.M., Wang Z., Zhao X., Wetterskog D., Funa K., Bråkenhielm E., Cao Y. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest., 2007; 117 (10): 2766–2777. doi: 10.1172/JCI32479

67. Richardson T.P., Peters M.C., Ennett A.B., Mooney D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol., 2001; 19 (11): 1029–1034. doi: 10.1038/nbt1101-1029

68. Banfi A., von Degenfeld G., Gianni-Barrera R., Reginato S., Merchant M.J., McDonald D.M., Blau H.M. Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. FASEB J., 2012; 26 (6): 2486–2497. doi: 10.1096/ fj.11-197400

69. Kang D.H., Hughes J., Mazzali M., Schreiner G.F., Johnson R.J. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J. Am. Soc. Nephrol., 2001; 12 (7): 1448–1457. doi: 10.1681/ASN.V1271448

70. Kupatt C., Hinkel R., Pfosser A., El-Aouni C., Wuchrer A., Fritz A., Globisch F., Thormann M., Horstkotte J., Lebherz C., Thein E., Banfi A., Boekstegers P. Cotransfection of vascular endothelial growth factor-A and platelet-derived growth factor-B via recombinant adeno-associated virus resolves chronic ischemic malperfusion role of vessel maturation. J. Am. Coll. Cardiol., 2010; 56 (5): 414–422. doi: 10.1016/j. jacc.2010.03.050

71. Мамаева М.Г., Демко И.В., Вериго Я.И., Крапошина А.Ю., Соловьева И.А., Хендогина В.Т. Маркеры системного воспаления и эндотелиальной дисфункции у больных хронической обструктивной болезнью легких. Сиб. мед. обозрение, 2014; (1): 12–19 [Mamaeva M.G., Demko I.V., Verigo Y.I.,. Кraposhina А.Yu, Solovieva I.А., Hendogina V.T. Markers of systemic inflammation and endothelial dysfunction in patients with chronic obstructive pulmonary disease. Siberian Medical Review, 2014; (1): 12–19. (In Russ.)].

72. Кириченко А.К., Патлатая Н.Н., Шаркова А.Ф., Певнев А.А., Конторев К.В., Шаповалова О.В., Горбань М.Е., Большаков И.Н. Патоморфоз магистральных сосудов конечностей при экспериментальном атерогенном воспалении. Роль адвентициально-интимальных взаимоотношений (обзор). Соврем. технол. в мед., 2017; 9 (3): 157–163. doi: 10.17691/stm2017.9.3.20 [Kirichenko А.К., Patlataya N.N., Sharkova А.F., Pevnev А.А., Kontorev К.V., Shapovalova О.V., Gorban М.Е., Bolshakov I.N. Pathomorphism of limb major vessels in experimental atherogenic inflammation. The role of adventitial intimal relations. Review. Modern Technologies in Medicine, 2017; 9 (3): 157–163. (In Russ.)]. doi: 10.17691/stm2017.9.3.20

73. Hasan A., Khattab A., Islam M.A., Hweij K.A., Zeitouny J., Waters R., Sayegh M., Hossain M.M., Paul A. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. (Weinh.), 2015; 2 (11): 1500122. doi: 10.1002/advs.201500122

74. Vieira T., Carvalho Silva J., Botelho do Rego A.M., Borges J.P., Henriques C. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. Mater. Sci. Eng. C. Mater. Biol. Appl., 2019; 103: 109819. doi: 10.1016/j. msec.2019.109819

75. Zhao N., Yue Z., Cui J., Yao Y., Song X., Cui B., Qi X., Han Z., Han Z.C., Guo Z., He Z.X., Li Z. IGF-1C domain-modified hydrogel enhances therapeutic potential of mesenchymal stem cells for hindlimb ischemia. Stem. Cell. Res. Ther., 2019; 10 (1): 129. doi: 10.1186/s13287-019-1230-0

76. Pagano P.J., Gutterman D.D. The adventitia: the outs and ins of vascular disease. Cardiovasc. Res., 2007; 75 (4): 636–639. doi: 10.1016/j.cardiores.2007.07.006

77. Blatchley M.R., Gerecht S. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed. Mater., 2015; 10 (3): 034001. doi: 10.1088/17486041/10/3/034001

78. Mongiat M., Andreuzzi E., Tarticchio G., Paulitti A. Extracellular matrix, a hard player in angiogenesis. Int. J. Mol. Sci., 2016; 17 (11): 1822. doi: 10.3390/ ijms17111822

79. Minardi S., Pandolfi L., Taraballi F., Wang X., De Rosa E., Mills Z.D., Liu X., Ferrari M., Tasciotti E. Enhancing vascularization through the controlled release of platelet-derived growth factorBB. ACS Appl. Mater. Interfaces, 2017; 9 (17): 14566– 14575. doi: 10.1021/acsami.6b13760

80. Awada H.K., Johnson N.R., Wang Y. Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects. Macromol. Biosci., 2014; 14 (5): 679–686. doi: 10.1002/mabi.201300486

81. Johnson N.R., Wang Y. Coacervate delivery systems for proteins and small molecule drugs. Expert Opin Drug Deliv., 2014; 11(12): 1829–1832. doi: 10.1517/17425247.2014.941355

82. Liu M., Zeng X., Ma C., Yi H., Ali Z., Mou X., Li S., Deng Y., He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res., 2017; 5: 17014. doi: 10.1038/boneres.2017.14

83. DeQuach J.A., Lin J.E., Cam C., Hu D., Salvatore M.A., Sheikh F., Christman K.L. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cell Mater., 2012; 23: 400–412. doi: 10.22203/ecm.v023a31

84. Rao N., Agmon G., Tierney M.T., Ungerleider J.L., Braden R.L., Sacco A., Christman K.L. Engineering an injectable muscle-specific microenvironment for improved cell delivery using a nanofibrous extracellular matrix hydrogel. ACS Nano, 2017; 11 (4): 3851–3859. doi: 10.1021/acsnano.7b00093

85. Takeshita S., Zheng L.P., Brogi E., Kearney M., Pu L.Q., Bunting S., Ferrara N., Symes J.F., Isner J.M. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. Clin. Invest., 1994; 93 (2): 662–670. doi: 10.1172/JCI117018

86. Freedman S.B., Isner J.M. Therapeutic angiogenesis for coronary artery disease. Ann. Intern. Med., 2002; 136 (1): 54–71. doi: 10.7326/0003-4819-136-1200201010-00011

87. Gupta R., Tongers J., Losordo D.W. Human studies of angiogenic gene therapy. Circ. Res., 2009; 105 (8): 724–736. doi: 10.1161/CIRCRESAHA.109.200386

88. Simons M., Annex B.H., Laham R.J., Kleiman N., Henry T., Dauerman H., Udelson J.E., Gervino E.V., Pike M., Whitehouse M.J., Moon T., Chronos N.A. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: doubleblind, randomized, controlled clinical trial. Circulation, 2002; 105 (7): 788–793. doi: 10.1161/hc0802.104407

89. Karvinen H., Ylä-Herttuala S. New aspects in vascular gene therapy. Curr. Opin. Pharmacol., 2010; 10 (2): 208–211. doi: 10.1016/j.coph.2010.01.004

90. Simons M., Ware J.A. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug. Discov., 2003; 2 (11): 863–871. doi: 10.1038/nrd1226

91. Henry T.D., Annex B.H., McKendall G.R., Azrin M.A., Lopez J.J., Giordano F.J., Shah P.K., Willerson J.T., Benza R.L., Berman D.S., Gibson C.M., Bajamonde A., Rundle A.C., Fine J., McCluskey E.R. VIVA Investigators. The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation, 2003; 107 (10): 1359–1365. doi: 10.1161/01.cir.0000061911.47710.8a

92. Annex B.H. Therapeutic angiogenesis for critical limb ischaemia. Nat. Rev. Cardiol., 2013; 10 (7): 387–396. doi: 10.1038/nrcardio.2013.70.

93. Bowling F.L., Rashid S.T., Boulton A.J. Preventing and treating foot complications associated with diabetes mellitus. Nat. Rev. Endocrinol., 2015; 11 (10): 606–616. doi: 10.1038/nrendo.2015.130

94. Rouwkema J., Khademhosseini A. Vascularization and angiogenesis in tissue engineering: beyond creating static networks. Trends. Biotechnol., 2016; 34 (9): 733–745. doi: 10.1016/j.tibtech.2016.03.002

95. Butt O.I., Carruth R., Kutala V.K., Kuppusamy P., Moldovan N.I. Stimulation of peri-implant vascularization with bone marrow-derived progenitor cells: monitoring by in vivo EPR oximetry. Tissue Eng., 2007; 13 (8): 2053–2061. doi: 10.1089/ten.2006.0225

96. Park J.E., Keller G.A., Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell., 1993; 4 (12): 1317–1326. doi: 10.1091/mbc.4.12.1317

97. Atanasova M., Whitty A. Understanding cytokine and growth factor receptor activation mechanisms. Crit. Rev. Biochem. Mol. Biol., 2012; 47 (6): 502–530. doi: 10.3109/10409238.2012.729561

98. Rozario T., DeSimone D.W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol., 2010; 341 (1): 126–140. doi: 10.1016/j. ydbio.2009.10.026

99. Finking G., Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterolfed rabbit as a model for atherosclerosis research. Atherosclerosis, 1997; 135 (1): 1–7. doi: 10.1016/ s0021-9150(97)00161-5

100. Lee S., Valmikinathan C.M., Byun J., Kim S., Lee G., Mokarram N., Pai S.B., Um E., Bellamkonda R.V., Yoon Y.S. Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cellderived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes. Biomaterials, 2015; 63: 158–167. doi: 10.1016/j. biomaterials.2015.06.009

101. Singh S., Wu B.M., Dunn J.C. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials, 2011; 32 (8): 2059–2069. doi: 10.1016/j. biomaterials.2010.11.038

102. Levenberg S., Rouwkema J., Macdonald M., Garfein E.S., Kohane D.S., Darland D.C., Marini R., van Blitterswijk C.A., Mulligan R.C., D'Amore P.A., Langer R. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol., 2005; 23 (7): 879–884. doi: 10.1038/nbt1109

103. Chen Y.C., Lin R.Z., Qi H., Yang Y., Bae H., MeleroMartin J.M., Khademhosseini A. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater., 2012; 22 (10): 2027–2039. doi: 10.1002/adfm.201101662

104. Santos M.I., Fuchs S., Gomes M.E., Unger R.E., Reis R.L., Kirkpatrick C.J. Response of microand macrovascular endothelial cells to starchbased fiber meshes for bone tissue engineering. Biomaterials, 2007; 28 (2): 240–248. doi: 10.1016/j. biomaterials.2006.08.006

105. Unger R.E., Dohle E., Kirkpatrick C.J. Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv. Drug. Deliv. Rev., 2015; 94: 116–125. doi: 10.1016/j.addr.2015.03.012

106. Banno K., Yoder M.C. Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr. Res., 2018; 83 (1-2): 283– 290. doi: 10.1038/pr.2017.231

107. Perets A., Baruch Y., Weisbuch F., Shoshany G., Neufeld G., Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A., 2003; 65 (4): 489–497. doi: 10.1002/jbm.a.10542

108. Newman A.C., Nakatsu M.N., Chou W., Gershon P.D., Hughes C.C. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell., 2011; 22 (20): 3791–3800. doi: 10.1091/mbc.E11-05-0393

109. Berthod F., Symes J., Tremblay N., Medin J.A., Auger F.A. Spontaneous fibroblast-derived pericyte recruitment in a human tissue-engineered angiogenesis model in vitro. J. Cell. Physiol., 2012; 227 (5): 2130– 2137. doi: 10.1002/jcp.22943

110. Fischbach C., Mooney D.J. Polymers for proand anti-angiogenic therapy. Biomaterials, 2007; 28 (12): 2069–2076. doi: 10.1016/j.biomaterials.2006.12.029

111. Deepa R., Paul W., Anilkumar T.V., Sharma C.P. Differential healing of full thickness rabbit skin wound by fibroblast loaded chitosan sponge. Journal of Biomaterials and Tissue Engineering, 2013; 3: 261–272. doi: 10.1166/jbt.2013.1094

112. Sun H., Wang X., Hu X., Yu W., You C., Hu H., Han C. Promotion of angiogenesis by sustained release of rhGM-CSF from heparinized collagen/chitosan scaffolds. J. Biomed. Mater. Res. B. Appl. Biomater., 2012; 100 (3): 788–798. doi: 10.1002/jbm.b.32512

113. Wang P.W., Liu J.L., Zhang T. In vitro biocompatibility of electrospun chitosan/collagen scaffold. J. Nanomaterials, 2013; 2013: 958172. doi: 10.1155/2013/958172

114. Sarrazin S., Lamanna W.C., Esko J.D. Heparan sulfate proteoglycans. Cold Spring. Harb. Perspect. Biol., 2011; 3 (7): a004952. doi: 10.1101/cshperspect. a004952

115. Thomas A.M., Gomez A.J., Palma J.L., Yap W.T., Shea L.D. Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors. Biomaterials, 2014; 35 (30): 8687–8693. doi: 10.1016/j.biomaterials.2014.06.027

116. Mima Y., Fukumoto S., Koyama H., Okada M., Tanaka S., Shoji T., Emoto M., Furuzono T., Nishizawa Y., Inaba M. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres. PLoS One, 2012; 7 (4): e35199. doi: 10.1371/journal.pone.0035199

117. Silva E.A., Kim E.S., Kong H.J., Mooney D.J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl. Acad. Sci. USA, 2008; 105 (38): 14347–14352. doi: 10.1073/ pnas.0803873105

118. Chen Y., Wang Z., Zhou L. Interleukin 8 inhibition enhanced cholesterol efflux in acetylated low-density lipoprotein-stimulated THP-1 macrophages. J. Investig. Med., 2014; 62 (3): 615–620. doi: 10.2310/ JIM.0000000000000049

119. Doran A.C., Yurdagul A. Jr., Tabas I. Efferocytosis in health and disease. Nat. Rev. Immunol., 2020; 20 (4): 254–267. doi: 10.1038/s41577-019-0240-6

120. Gerlach B.D., Ampomah P.B., Yurdagul A. Jr., Liu C., Lauring M.C., Wang X., Kasikara C., Kong N., Shi J., Tao W., Tabas I. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab., 2021; 33 (12): 2445–2463. doi: 10.1016/j.cmet.2021.10.015

121. Jahani M., Rezazadeh D., Mohammadi P., Abdolmaleki A., Norooznezhad A., Mansouri K. Regenerative medicine and angiogenesis; challenges and opportunities. Adv. Pharm. Bull., 2020; 10: 490–501. doi: 10.34172/apb.2020.061

122. Tang W., Liu Z., Si Y. Tunica arterial adventitia: a new exploration in intimal hyperplasia. J. Vasc. Med. Surg., 2013; 1: 108. doi: 10.4172/2329-6925.1000108

123. Ogeng’o J., Ominde B.S., Ongeti K., Olabu B., Obimbo M., Mwachaka P. Reappraisal of the structure of arterial Tunica adventitia and its involvement in atherosclerosis. Anat. J. Africa, 2020; 6: 824–833. doi: 10.4314/aja.v6i1.150685

124. Ogeng’o J.A., Maseghe P., Ongeti K., Obimbo M., Olabu B. Tunica adventitia of the aorta in an active vascular compartment. Anat. J. Afr., 2015; 4: 617–623.

125. Mulligan-Kehoe M.J., Simons M. Vasa vasorum in normal and diseased arteries. Circulation, 2014; 129: 2557–2566. doi: 10.1161/CIRCULATIONAHA.113.007189

126. Fugundes A., Pereira A.H., Correa K., de Oliveira M.T., Rodriguez R. Effects of removal of the adventitia of the descending aorta and structural alterations in the tunica media in pigs. Rev. Col. Bras. Circ., 2012; 39: 133–138.

127. Skilton M.R., Boussel L., Benard S., Douek P.C., Moulin P., Serusclat A. Carotid intima – media and adventitial thickening: comparison of new and established ultrasound and magnetic resonance imaging techniques. Atherosclerosis, 2011; 215: 405– 410. doi: 10.1016/j.atherosclerosis.2010.12.036

128. Stenmark K., Yeager M., El Kasmi K.C., NozikGrayck E, Gerasimovskaya E.V., Li M. The adventitia: essential regulator of vascular structure and function. Ann. Rev. Pysiol., 2013; 75: 23–47. doi: 10.1146/ annurev-physiol-030212-183802

129. Owens C.D., Gasper W.J., Walk J.P., Alley H.F., Conte M.S., Grenon S.M. Safety and feasibility of adjunctive dexamethasone infusion into the adventitia of the femoropopliteal artery following endovascular revascularization. J. Vasc. Surg., 2014; 59: 1016–1024. doi: 10.1016/j.jvs.2013.10.051

130. Torsney E., Hu Y., Xu Qi. Adventitial progenitor cells contribute to arteriosclerosis. Trends Cardiovasc. Med., 2005; 15: 64–68. doi: 10.1016/j.tcm.2005.02.003

131. Chang L., Villacorta L., Li R., Hamblin M., Xu W., Dou C., Zhang J., Wu J., Zeng R., Chen Y.E. Loss of perivascular adipose tissue on peroxisome proliferatoractivated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation, 2012; 126: 1067–1078. doi: 10.1161/circulationaha.112.104489

132. Fitzgibbons T.P., Czech M.P. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J. Am. Heart Assoc., 2014; 3: e000582. doi: 10.1161/jaha.113.000582

133. Huh J.Y., Park Y.J., Ham M., Kim J.B. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells, 2014; 37:365–371. doi: 10.14348/ molcells.2014.0074


Review

For citations:


Bolshakov I.N., Shindyakin D.V., Kirichenko A.K., Bahshyan V.A., Arkhipkin S.V. The role of polysaccharide polymers in the regulation of angiogenesis and atherogenic inflammation in the vascular wall. Literature review. Part 2. Ateroscleroz. 2025;21(2):180-203. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-2-180-203

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)