Preview

Атеросклероз

Расширенный поиск

Цитокиновые факторы роста в регуляции ангиогенеза и атерогенного воспаления в сосудистой стенке. Аналитический обзор. Часть 1

https://doi.org/10.52727/2078-256X-2025-21-1-60-91

Аннотация

Целью обзора является оценка терапевтических возможностей локальной активации ангиогенеза и прерывания атерогенного воспаления при реконструкции слоев артериальной стенки методом введения полисахаридных полимеров в пара-адвентициальную зону кровеносных сосудов. Концепция обзора строится на гипотезе восстановления баланса провоспалительных и атеропротекторных цитокиновых факторов роста при использовании биополимеров. Согласно данным литературы реконструкция адвентициального слоя артериальной стенки с применением гидрогелей полисахаридного ряда, обладающих высоким сродством к холестерину, обусловливает формирование дополнительного внеклеточного матрикса за пределами интимальной и средней зон магистральной артерии и перехода холестериновой массы из интимальной зоны в околоадвентициальное пространство. Создание продуктивного воспаления в зоне адвентиции с помощью биополимеров может служить одним из эффективных способов деградации ранних мягких атеросклеротических бляшек. Рассматривается возможность удаления мягких атеросклеротических бляшек из интимального пространства магистральных артерий методом обширной имплантации в фасциальный футляр сосудов полисахаридных гидрогелей, образующих внеклеточный матрикс второго уровня. Анализ литературы, соответствующей концепции, проводился с использованием баз данных WoS, Scopus, PubMed, DOAJ, Embase, Ei Compendex, преимущественно за последние 8 лет. Обзор позволяет составить представление о молекулярных процессах, протекающих в стенке сосуда при развитии атерогенного воспаления и выявить признаки реконструкции сосудистой стенки при экзогенной имплантации биополимеров. В сосудистой стенке цитокиновые факторы роста сопряжены с природными или синтетическими биоматериалами. Иммобилизованные факторы доступны для клеток, которые вступают в контакт с матрицей, и обеспечивают точно локализованный сигнал для контроля судьбы клеток. Многообещающим подходом для стимулирования ангиогенеза являются биополимерные инъекционные каркасы. Клеточная миграция из интимы и медии может быть активирована благодаря электростатическому градиенту в присутствии сульфатированного полимера, образующего аффинные комплексы с холестерином и липопротеинами низкой плотности (ЛПНП). Высокая аффинность полисахаридных полимеров к холестерину и ЛПНП, а также активная васкуляризация дополнительного экстраклеточного матрикса провоцируют концентрационный градиент холестерина, направленный в сторону гидрогелевой «рубашки». Эффект оттока холестерина может стать основой нового подхода в терапии патологии магистральных сосудов.

Об авторах

И. Н. Большаков
Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации»
Россия

Игорь Николаевич Большаков, д-р мед. наук, проф. кафедры оперативной хирургии и топографической анатомии

660022, г. Красноярск, ул. Партизана Железняка, 1



Д. В. Шиндякин
Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации»
Россия

Дмитрий Васильевич Шиндякин, студент педиатрического факультета

660022, г. Красноярск, ул. Партизана Железняка, 1



А. К. Кириченко
Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации»
Россия

Андрей Константинович Кириченко, д-р мед. наук, проф. кафедры патологической анатомии

660022, г. Красноярск, ул. Партизана Железняка, 1



В. А. Бахшян
Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации»
Россия

Валентина Артуровна Бахшян, студент лечебного факультета

660022, г. Красноярск, ул. Партизана Железняка, 1



С. В. Архипкин
Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации»
Россия

Сергей Викторович Архипкин, старший преподаватель кафедры оперативной хирургии и топографической анатомии

660022, г. Красноярск, ул. Партизана Железняка, 1



Список литературы

1. Abu Dabrh A.M., Steffen M.W., Undavalli C., Asi N., Wang Z., Elamin M.B., Conte M.S., Murad M.H. The natural history of untreated severe or critical limb ischemia. J. Vasc. Surg., 2015; 62 (6): 1642–1651. doi: 10.1016/j.jvs.2015.07.065

2. Han J., Luo L., Marcelina O., Kasim V., Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics, 2022; 12 (11): 5015–5033. doi: 10.7150/thno.74785

3. Riley C.M., Fuegy P.W., Firpo M.A., Shu X.Z., Prestwich G.D., Peattie R.A. Stimulation of in vivo angiogenesis using dual growth factor-loaded cross-linked glycosaminoglycan hydrogels. Biomaterials, 2006; 27 (35): 5935–5943. doi: 10.1016/j.biomaterials.2006.08.029

4. Chiu L.L., Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010; 31 (2): 226–241. doi: 10.1016/j.biomaterials.2009.09.039

5. Layman H., Li X., Nagar E., Vial X., Pham S.M., Andreopoulos F.M. Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. J. Biomater. Sci. Polym. Ed., 2012; 23 (1-4): 185–206. doi: 10.1163/092050610X546417

6. Roberts J.J., Farrugia B.L., Green R.A., Rnjak-Kovacina J., Martens P.J. In situ formation of poly(vinyl alcohol)-heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor. J. Tissue Eng., 2016; 7: 2041731416677132. doi: 10.1177/2041731416677132

7. Zieris A., Chwalek K., Prokoph S., Levental K.R., Welzel P.B., Freudenberg U., Werner C. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels. J. Control. Release, 2011; 156 (1): 28–36. doi: 10.1016/j.jconrel.2011.06.042

8. Yancopoulos G.D., Davis S., Gale N.W., Rudge J.S., Wiegand S.J., Holash J. Vascular-specific growth factors and blood vessel formation. Nature, 2000; 407 (6801): 242–248. doi: 10.1038/35025215

9. Li B., Xiu R. Angiogenesis: from molecular mechanisms to translational implications. Clin. Hemorheol. Microcirc., 2013; 54 (4): 345–355. doi: 10.3233/CH-121647

10. Jansen P.L., Rosch R., Jansen M., Binnebösel M., Junge K., Alfonso-Jaume A., Klinge U., Lovett D.H., Mertens P.R. Regulation of MMP-2 gene transcription in dermal wounds. J. Invest. Dermatol., 2007; 127 (7): 1762–1767. doi: 10.1038/sj.jid.5700765

11. Zhang J., Kasim V., Xie Y.D., Huang C., Sisjayawan J., Dwi Ariyanti A., Yan X.S., Wu X.Y., Liu C.P., Yang L., Miyagishi M., Wu S.R. Inhibition of PHD3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors. Sci. Rep., 2017; 7: 43935. doi: 10.1038/srep43935

12. Luo L.L., Han J.X., Wu S.R., Kasim V. Intramuscular injection of sotagliflozin promotes neovascularization in diabetic mice through enhancing skeletal muscle cells paracrine function. Acta Pharmacol. Sin., 2022; 43 (10): 2636–2650. doi: 10.1038/s41401-022-00889-4

13. Liu C., Han J., Marcelina O., Nugrahaningrum D.A., Huang S., Zou M., Wang G., Miyagishi M., He Y., Wu S., Kasim V. Discovery of salidroside-derivated glycoside analogues as novel angiogenesis agents to treat diabetic hind limb ischemia. J. Med. Chem., 2022; 65 (1): 135–162. doi: 10.1021/acs.jmedchem.1c00947

14. Davidson S.M. FAM3A – A mitochondrial route to the stimulation of angiogenesis? EBioMedicine, 2019; 43: 3–4. doi: 10.1016/j.ebiom.2019.04.033

15. Chapanian R., Amsden B.G. Combined and sequential delivery of bioactive VEGF165 and HGF from poly(trimethylene carbonate) based photo-crosslinked elastomers. J. Control. Release, 2010; 143 (1): 53–63. doi: 10.1016/j.jconrel.2009.11.025

16. Fagiani E., Christofori G. Angiopoietins in angiogenesis. Cancer Lett., 2013, 328 (1): 18–26. doi: 10.1016/j.canlet.2012.08.018

17. Sakurai T., Kudo M. Signaling pathways governing tumor angiogenesis. Oncology, 2011; 81, Suppl 1: 24– 29. doi: 10.1159/000333256

18. Payne L.B., Tewari B.P., Dunkenberger L., Bond S., Savelli A., Darden J., Zhao H., Willi C., Kanodia R., Gude R., Powell M.D., Oestreich K.J., Sontheimer H., Dal-Pra S., Chappell J.C. Pericyte progenitor coupling to the emerging endothelium during vasculogenesis via connexin 43. Arterioscler. Thromb. Vasc. Biol., 2022; 42 (4): 96–114. doi: 10.1161/ATVBAHA.121.317324

19. Kruse K., Lee Q.S., Sun Y., Klomp J., Yang X., Huang F., Sun M.Y., Zhao S., Hong Z., Vogel S.M., Shin J.W., Leckband D.E., Tai L.M., Malik A.B., Komarova Y.A. N-cadherin signaling via Trio assembles adherens junctions to restrict endothelial permeability. J. Cell. Biol., 2019; 218 (1): 299–316. doi: 10.1083/jcb.201802076

20. Moccia F., Negri S., Shekha M., Faris P., Guerra G. Endothelial Ca2+ signaling, angiogenesis and vasculogenesis: just what it takes to make a blood vessel. Int. J. Mol. Sci., 2019; 20 (16): 3962. doi: 10.3390/ijms20163962

21. Annex B.H. Therapeutic angiogenesis for critical limb ischaemia. Nat. Rev. Cardiol., 2013; 10 (7): 387–396. doi: 10.1038/nrcardio.2013.0

22. Hoeben A., Landuyt B., Highley M.S., Wildiers H., van Oosterom A.T., de Bruijn E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 2004; 56 (4): 549–580. doi: 10.1124/pr.56.4.3

23. Braghirolli D.I., Helfer V.E., Chagastelles P.C., Dalberto T.P., Gamba D., Pranke P. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed. Mater., 2017; 12 (2): 025003. doi: 10.1088/1748-605X/aa5bbc

24. Chung A.S., Lee J., Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer, 2010; 10 (7): 505–514. doi: 10.1038/nrc2868

25. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med., 2018; 117: 76–89. doi: 10.1016/j.freeradbiomed.2018.01.024

26. Kivelä R., Bry M., Robciuc M.R., Räsänen M., Taavitsainen M., Silvola J.M., Saraste A., Hulmi J.J., Anisimov A., Mдyränpää M.I., Lindeman J.H., Eklund L., Hellberg S., Hlushchuk R., Zhuang Z.W., Simons M., Djonov V., Knuuti J., Mervaala E., Alitalo K. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol. Med., 2014; 6 (3): 307–321. doi: 10.1002/emmm.201303147

27. Groppa E., Brkic S., Bovo E., Reginato S., Sacchi V., di Maggio N., Muraro M.G., Calabrese D., Heberer M., Gianni-Barrera R., Banfi A. VEGF dose regulates vascular stabilization through Semaphorin3A and the Neuropilin-1+ monocyte/TGFβ1 paracrine axis. EMBO Mol. Med., 2015; 7 (10): 1366–1384. doi: 10.15252/emmm.201405003

28. Grunewald M., Kumar S., Sharife H., Volinsky E., Gileles-Hillel A., Licht T., Permyakova A., Hinden L., Azar S., Friedmann Y., Kupetz P., Tzuberi R., Anisimov A., Alitalo K., Horwitz M., Leebhoff S., Khoma O.Z., Hlushchuk R., Djonov V., Abramovitch R., Tam J., Keshet E. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science, 2021; 373 (6554): eabc8479. doi: 10.1126/science.abc8479

29. Rissanen T.T., Markkanen J.E., Gruchala M., Heikura T., Puranen A., Kettunen M.I., Kholová I., Kauppinen R.A., Achen M.G., Stacker S.A., Alitalo K., Ylä-Herttuala S. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res., 2003; 92 (10): 1098–1106. doi: 10.1161/01.RES.0000073584.46059.E3

30. Wu M., Pokreisz P., Swinnen M., Caluwe E., Gillijns H., Vanden Driessche N., Casazza A., Verbeken E., Collen D., Janssens S. Sustained placental growth factor-2 treatment does not aggravate advanced atherosclerosis in ischemic cardiomyopathy. J. Cardiovasc. Transl. Res., 2017; 10 (4): 348–358. doi: 10.1007/s12265-017-9742-4

31. Goonoo N., Bhaw-Luximon A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv., 2019; 9 (32): 18124–18146. doi: 10.1039/c9ra02765c

32. Risau W. Angiogenic growth factors. Prog. Growth. Factor Res., 1990; 2 (1): 71–79. doi: 10.1016/0955-2235(90)90010-h

33. Chung J.C., Shum-Tim D. Neovascularization in tissue engineering. Cells, 2012; 1 (4): 1246–1260. doi: 10.3390/cells1041246

34. Nikol S., Baumgartner I., van Belle E., Diehm C., Visoná A., Capogrossi M.C., Ferreira-Maldent N., Gallino A., Graham Wyatt M., Dinesh Wijesinghe L., Fusari M., Stephan D., Emmerich J., Pompilio G., Vermassen F., Pham E., Grek V., Coleman M., Meyer F. Therapeutic angiogenesis with intramuscular nv1fgf improves amputation-free survival in patients with critical limb ischemia. Mol. Ther., 2008; 16 (5): 972–978. doi: 10.1038/mt.2008.33

35. Mukherjee S., Patra C.R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale, 2016; 8 (25): 12444–12470. doi: 10.1039/c5nr07887c

36. Morishita R., Shimamura M., Takeya Y., Nakagami H., Chujo M., Ishihama T., Yamada E., Rakugi H. Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan. Curr. Gene Ther., 2020; 20 (1): 25–35. doi: 10.2174/1566523220666200516171447

37. Sanada F., Fujikawa T., Shibata K., Taniyama Y., Rakugi H., Morishita R. Therapeutic angiogenesis using HGF plasmid. Ann. Vasc. Dis., 2020; 13 (2): 109–115. doi: 10.3400/avd.ra.20-00035.

38. Wu J., Heemskerk J.W.M., Baaten C.C.F.M.J. Platelet membrane receptor proteolysis: implications for platelet function. Front. Cardiovasc. Med., 2021; 7: 608391. doi: 10.3389/fcvm.2020.608391

39. Burzynski L.C., Humphry M., Pyrillou K., Wiggins K.A., Chan J.N.E., Figg N., Kitt L.L., Summers C., Tatham K.C., Martin P.B., Bennett M.R., Clarke M.C.H. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity, 2019; 50 (4): 1033–1042.e6. doi: 10.1016/j.immuni.2019.03.003

40. Fang X., Liao R., Yu Y., Li J., Guo Z., Zhu T. Thrombin induces secretion of multiple cytokines and expression of protease-activated receptors in mouse mast cell line. Mediators Inflamm., 2019; 2019: 4952131. doi: 10.1155/2019/4952131

41. Jaberi N., Soleimani A., Pashirzad M., Abdeahad H., Mohammadi F., Khoshakhlagh M., Khazaei M., Ferns G.A., Avan A., Hassanian S.M. Role of thrombin in the pathogenesis of atherosclerosis. J. Cell. Biochem., 2019; 120 (4): 4757–4765. doi: 10.1002/jcb.27771

42. Bea F., Kreuzer J., Preusch M., Schaab S., Isermann B., Rosenfeld M.E., Katus H., Blessing E. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2006; 26 (12): 2787–2792. doi: 10.1161/01.ATV.0000246797.05781.ad

43. Grebe A., Hoss F., Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018; 122 (12): 1722–1740. doi: 10.1161/CIRCRESAHA.118.311362

44. Latz E., Xiao T.S., Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013; 13 (6): 397–411. doi: 10.1038/nri3452

45. Galea J., Armstrong J., Gadsdon P., Holden H., Francis S.E., Holt C.M. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol., 1996; 16 (8): 1000– 1006. doi: 10.1161/ 01.atv.16.8.1000

46. Weber A., Wasiliew P., Kracht M. Interleukin-1beta (IL-1beta) processing pathway. Sci. Signal, 2010; 3 (105): cm2. doi: 10.1126/scisignal.3105cm2

47. Weber A., Wasiliew P., Kracht M. Interleukin-1 (IL-1) pathway. Sci. Signal, 2010; 3 (105): cm1. doi: 10.1126/scisignal.3105cm1

48. Beltrami-Moreira M., Vromman A., Sukhova G.K., Folco E.J., Libby P. Redundancy of IL-1 isoform signaling and its implications for arterial remodeling. PLoS One, 2016; 11 (3): e0152474. doi: 10.1371/journal.pone.0152474

49. Libby P. Collagenases and cracks in the plaque. J. Clin. Invest., 2013; 123 (8): 3201–3203. doi: 10.1172/JCI67526

50. Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J. Am. Coll. Cardiol., 2017; 70 (18): 2278–2289. doi: 10.1016/j.jacc.2017.09.028

51. Vromman A., Ruvkun V., Shvartz E., Wojtkiewicz G., Santos Masson G., Tesmenitsky Y., Folco E., Gram H., Nahrendorf M., Swirski F.K., Sukhova G.K., Libby P. Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur. Heart J., 2019; 40 (30): 2482–2491. doi: 10.1093/eurheartj/ehz008

52. Kamari Y., Shaish A., Shemesh S., Vax E., Grosskopf I., Dotan S., White M., Voronov E., Dinarello C.A., Apte R.N., Harats D. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin1α. Biochem. Biophys. Res. Commun., 2011; 405 (2): 197–203. doi: 10.1016/j.bbrc.2011.01.008

53. Tsioufis P., Theofilis P., Tsioufis K., Tousoulis D. The impact of cytokines in coronary atherosclerotic plaque: current therapeutic approaches. Int. J. Mol. Sci., 2022; 23 (24): 15937. doi: 10.3390/ijms232415937

54. Dinarello C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018; 281 (1): 8–27. doi: 10.1111/imr.12621

55. Herder C., de Las Heras Gala T., Carstensen-Kirberg M., Huth C., Zierer A., Wahl S., Sudduth-Klinger J., Kuulasmaa K., Peretz D., Ligthart S., Bongaerts B.W.C., Dehghan A., Ikram M.A., Jula A., Kee F., Pietilä A., Saarela O., Zeller T., Blankenberg S., Meisinger C., Peters A., Roden M., Salomaa V., Koenig W., Thorand B. Circulating levels of interleukin 1-receptor antagonist and risk of cardiovascular disease: meta-analysis of six population-based cohorts. Arterioscler. Thromb. Vasc. Biol., 2017; 37 (6): 1222–1227. doi: 10.1161/ATVBAHA.117.309307

56. Mai W., Liao Y. Targeting IL-1β in the treatment of atherosclerosis. Front. Immunol., 2020; 11: 589654. doi: 10.3389/fimmu.2020.589654

57. Lee Y.W., Hirani A.A. Role of interleukin-4 in atherosclerosis. Arch. Pharm. Res., 2006; 29 (1): 1–15. doi: 10.1007/BF02977462

58. Ali M., Girgis S., Hassan A., Rudick S., Becker R.C. Inflammation and coronary artery disease: from pathophysiology to Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Coron. Artery Dis., 2018; 29 (5): 429–437. doi: 10.1097/MCA.0000000000000625

59. Silveira A., McLeod O., Strawbridge R.J., Gertow K., Sennblad B., Baldassarre D., Veglia F., Deleskog A., Persson J., Leander K., Gigante B., Kauhanen J., Rauramaa R., Smit A.J., Mannarino E., Giral P., Gustafsson S., Söderberg S., Öhrvik J., Humphries S.E., Tremoli E., de Faire U., Hamsten A. Plasma IL-5 concentration and subclinical carotid atherosclerosis. Atherosclerosis, 2015; 239 (1): 125–130. doi: 10.1016/j.atherosclerosis.2014.12.046

60. Ishigami T., Abe K., Aoki I., Minegishi S., Ryo A., Matsunaga S., Matsuoka K., Takeda H., Sawasaki T., Umemura S., Endo Y. Anti-interleukin-5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin-5 levels. FASEB J., 2013; 27 (9): 3437–3445. doi: 10.1096/fj.12-222653

61. Zhao W., Lei T., Li H., Sun D., Mo X., Wang Z., Zhang K., Ou H. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice. Gene Ther., 2015; 22 (8): 645–652. doi: 10.1038/gt.2015.33

62. Ren W., Wang Z., Wang J., Wu Z., Ren Q., Yu A., Ruan Y. IL-5 overexpression attenuates aortic dissection by reducing inflammation and smooth muscle cell apoptosis. Life Sci., 2020; 241: 117144. doi: 10.1016/j.lfs.2019.117144

63. Reiss A.B., Siegart N.M., de Leon J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol., 2017; 12: 14–23. doi: 10.1080/17584299.2017.1319787

64. Schaper F., Rose-John S. Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth. Factor Rev., 2015; 26 (5): 475–487. doi: 10.1016/j.cytogfr.2015.07.004

65. Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci., 2012; 8 (9): 1237–1247. doi: 10.7150/ijbs.4989

66. Tzoulaki I., Murray G.D., Lee A.J., Rumley A., Lowe G.D.O., Fowkes F.G.R. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation, 2005; 112: 976–983. doi: 10.1161/CIRCULATIONAHA.104.513085

67. Li R., Paul A., Ko K.W., Sheldon M., Rich B.E., Terashima T., Dieker C., Cormier S., Li L., Nour E.A., Chan L., Oka K. Interleukin-7 induces recruitment of monocytes/macrophages to endothelium. Eur. Heart J., 2012; 33 (24): 3114–3123. doi: 10.1093/eurheartj/ehr245

68. Standiford T.J., Strieter R.M., Allen R.M., Burdick M.D., Kunkel S.L. IL-7 up-regulates the expression of IL-8 from resting and stimulated human blood monocytes. J. Immunol., 1992; 149: 2035–2039.

69. An Z., Li J., Yu J., Wang X., Gao H., Zhang W., Wei Z., Zhang J., Zhang Y., Zhao J., Liang X.. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell. Cycle, 2019; 18: 2928–2938. doi: 10.1080/15384101.2019.1662678

70. Zhang W., Tang T., Nie D., Wen S., Jia C., Zhu Z., Xia N., Nie S., Zhou S., Jiao J., Dong W., Lv B., Xu T., Sun B., Lu Y., Li Y., Cheng L., Liao Y., Cheng X. IL-9 aggravates the development of atherosclerosis in ApoE-/mice. Cardiovasc. Res., 2015; 106 (3): 453–464. doi: 10.1093/cvr/cvv110

71. Mittal S.K., Cho K.J., Ishido S., Roche P.A. Interleukin 10 (IL-10)-mediated immunosuppression: march-I induction regulates antigen presentation by macrophages but not dendritic cells. J. Biol. Chem., 2015; 290 (45): 27158–27167. doi: 10.1074/jbc.M115.682708

72. Han X., Boisvert W.A. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb. Haemost., 2015; 113 (3): 505–512. doi: 10.1160/TH14-06-0509

73. Abu El-Asrar A.M., Ahmad A., Allegaert E., Siddiquei M.M., Gikandi P.W., de Hertogh G., Opdenakker G. Interleukin-11 overexpression and M2 macrophage density are associated with angiogenic activity in proliferative diabetic retinopathy. Ocul. Immunol. Inflamm., 2020; 28 (4): 575–588. doi: 10.1080/09273948.2019.1616772

74. Roger I., Estornut C., Ballester B., Milara J., Cortijo J. Role of IL-11 in vascular function of pulmonary fibrosis patients. Eur. Respir. J., 2019; 54 (suppl 63): PA1424. doi: 10.1183/13993003.congress-2019.PA1424

75. Elshabrawy H.A., Volin M.V., Essani A.B., Chen Z., McInnes I.B., van Raemdonck K., Palasiewicz K., Arami S., Gonzalez M., Ashour H.M., Kim S.J., Zhou G., Fox D.A., Shahrara S. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis, 2018; 21 (2): 215–228. doi: 10.1007/s10456-017-9589-y

76. Guo Y.T., Lu Y.Y., Lu X., He S., Li S.J., Shao S., Zhou H.D., Wang R.Q., Li X.D., Gao P.J. Krüppellike factor 15/interleukin 11 axis-mediated adventitial remodeling depends on extracellular signal-regulated kinases 1 and 2 activation in angiotensin ii-induced hypertension. J. Am. Heart Assoc., 2021; 10 (16): e020554. doi: 10.1161/JAHA.120.020554

77. Widjaja A.A., Viswanathan S., Jinrui D., Singh B.K., Tan J., Wei Ting J.G., Lamb D., Shekeran S.G., George B.L., Schafer S., Carling D., Adami E., Cook S.A. Molecular dissection of pro-fibrotic IL11 signaling in cardiac and pulmonary fibroblasts. Front. Mol. Biosci., 2021; 8: 740650. doi: 10.3389/fmolb.2021.740650

78. Ye J., Wang Y., Wang Z., Liu L., Yang Z., Wang M., Xu Y., Ye D., Zhang J., Lin Y., Ji Q., Wan J. Roles and mechanisms of interleukin-12 family members in cardiovascular diseases: opportunities and challenges. Front. Pharmacol., 2020; 11: 129. doi: 10.3389/fphar.2020.00129

79. Bobryshev Y.V., Sobenin I.A., Orekhov A.N., Chistiakov D.A. Novel anti-inflammatory interleukin-35 as an emerging target for antiatherosclerotic therapy. Curr. Pharm. Des., 2015 ;21: 1147–1151. doi: 10.2174/1381612820666141014123810

80. Kan X., Wu Y., Ma Y., Zhang C., Li P., Wu L., Zhang S., Li Y., Du J. Deficiency of IL-12p35 improves cardiac repair after myocardial infarction by promoting angiogenesis. Cardiovasc. Res., 2016; 109 (2): 249–259. doi: 10.1093/cvr/cvv255

81. Фатхуллина А.Р., Пешкова Ю.О., Кольцова Е.К. Роль цитокинов в развитии атеросклероза. Биохимия, 2016: 81 (11): 1614–1627. doi: 10.1134/S0006297916110134

82. Rossol M., Heine H., Meusch U., Quandt D., Klein C., Sweet M.J., Hauschildt S. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol., 2011; 31 (5): 379– 446. doi: 10.1615/critrevimmunol.v31.i5.20

83. McGeachy M.J., Cua D.J., Gaffen S.L. The IL-17 family of cytokines in health and disease. Immunity, 2019; 50 (4): 892–906. doi: 10.1016/j.immuni.2019.03.021

84. Kidani Y., Bensinger S.J. Reviewing the impact of lipid synthetic flux on Th17 function. Curr. Opin. Immunol., 2017; 46: 121–126. doi: 10.1016/j.coi.2017.03.012

85. Danzaki K., Matsui Y., Ikesue M., Ohta D., Ito K., Kanayama M., Kurotaki D., Morimoto J., Iwakura Y., Yagita H., Tsutsui H., Uede T. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2012; 32 (2): 273–280. doi: 10.1161/ATVBAHA.111.229997

86. Erbel C., Dengler T.J., Wangler S., Lasitschka F., Bea F., Wambsganss N., Hakimi M., Böckler D., Katus H.A., Gleissner C.A. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res. Cardiol., 2011; 106 (1): 125–134. doi: 10.1007/s00395-010-0135-y

87. González L., Rivera K., Andia M.E., Rodriguez G.M. The IL-1 family and its role in atherosclerosis. Int. J. Mol. Sci., 2022; 24 (1): 17. doi: 10.3390/ijms24010017

88. Gallagher G. Interleukin-19: multiple roles in immune regulation and disease. Cytokine Growth. Factor Rev., 2010; 21 (5): 345–352. doi: 10.1016/j.cytogfr.2010.08.005

89. Gabunia K., Ellison S., Kelemen S., Kako F., Cornwell W.D., Rogers T.J., Datta P.K., Ouimet M., Moore K.J., Autieri M.V. IL-19 halts progression of atherosclerotic plaque, polarizes, and increases cholesterol uptake and efflux in macrophages. Am. J. Pathol., 2016; 186 (5): 1361–1374. doi: 10.1016/j.aj-path.2015.12.023

90. Francis A.A., Pierce G.N. An integrated approach for the mechanisms responsible for atherosclerotic plaque regression. Exp. Clin. Cardiol., 2011; 16 (3): 77–86.

91. Khallou-Laschet J., Varthaman A., Fornasa G., Compain C., Gaston A.T., Clement M., Dussiot M., Levillain O., Graff-Dubois S., Nicoletti A., Caligiuri G. Macrophage plasticity in experimental atherosclerosis. PLoS One, 2010; 5 (1): e8852. doi: 10.1371/journal.pone.0008852

92. Ellison S., Gabunia K., Kelemen S.E., England R.N., Scalia R., Richards J.M., Orr A.W., Traylor J.G. Jr, Rogers T., Cornwell W., Berglund L.M., Goncalves I., Gomez M.F., Autieri M.V. Attenuation of experimental atherosclerosis by interleukin-19. Arterioscler. Thromb. Vasc. Biol., 2013; 33 (10): 2316–2324. doi: 10.1161/ATVBAHA.113.301521

93. Commins S., Steinke J.W., Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. Allergy Clin. Immunol., 2008; 121 (5): 1108–1111. doi: 10.1016/j.jaci.2008.02.026

94. Hsieh M.Y., Chen W.Y., Jiang M.J., Cheng B.C., Huang T.Y., Chang M.S. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun., 2006; 7 (3): 234–242. doi: 10.1038/sj.gene.6364291

95. Xia Q., Xiang X., Patel S., Puranik R., Xie Q., Bao S. Characterisation of IL-22 and interferon-gamma-inducible chemokines in human carotid plaque. Int. J. Cardiol., 2012; 154 (2): 187–189. doi: 10.1016/j.ijcard.2011.10.093

96. Rattik S., Hultman K., Rauch U., Söderberg I., Sundius L., Ljungcrantz I., Hultgеrdh-Nilsson A., Wigren M., Björkbacka H., Fredrikson G.N., Nilsson J. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice. Atherosclerosis, 2015; 242 (2): 506–514. doi: 10.1016/j.atherosclerosis.2015.08.006

97. Luo J.W., Hu Y., Liu J., Yang H., Huang P. Inter-leukin-22: a potential therapeutic target in atherosclerosis. Mol. Med., 2021; 27: 88. doi: 10.1186/s10020-021-00353-9

98. Che Y., Su Z., Xia L. Effects of IL-22 on cardiovascular diseases. Int. Immunopharmacol., 2020; 81: 106277. doi: 10.1016/j.intimp.2020.106277

99. Evans B.R., Yerly A., van der Vorst E.P.C., Baumgartner I., Schindewolf S.M.B., Döring Y. Inflammatory mediators in atherosclerotic vascular remodeling. Front. Cardiovasc. Med., 2022; 9: 868934. doi: 10.3389/fcvm.2022.868934

100. Shi L., Ji Qi., Liu L., Shi Y., Lu Z., Ye J., Zeng T., Xue Y., Yang Z., Liu Y., Lu J., Huang Xi., Qin Qi., Li T., Lin Y.-Z. IL-22 produced by Th22 cells aggravates atherosclerosis development in ApoE-/-mice by enhancing DC-induced Th17 cell proliferation. J. Cell. Mol. Med., 2020; 24: 3064–3078. doi: 10.1111/jcmm.14967

101. Wang J., Zhao P., Gao Y., Zhang F., Yuan X., Jiao Y., Gong K. The effects of anti-IL-23p19 therapy on atherosclerosis development in ApoE-/-mice. J. Interferon Cytokine Res., 2019; 39 (9): 564–571. doi: 10.1089/jir.2019.0050

102. Subramanian M., Thorp E., Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ. Res., 2015; 116 (2): e13–e24. doi: 10.1161/CIRCRESAHA.116.304794

103. Fatkhullina A.R., Peshkova I.O., Dzutsev A., Aghayev T., McCulloch J.A., Thovarai V., Badger J.H., Vats R., Sundd P., Tang H.Y., Kossenkov A.V., Hazen S.L., Trinchieri G., Grivennikov S.I., Koltsova E.K. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity, 2018; 49 (5): 943–957.e9. doi: 10.1016/j.immuni.2018.09.011

104. Zheng Y., Valdez P.A., Danilenko D.M., Hu Y., Sa S.M., Gong Q., Abbas A.R., Modrusan Z., Ghilardi N., de Sauvage F.J., Ouyang W. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med., 2008; 14: 282–289.

105. Lee K.-M., Kang H.A., Park M., Lee H.Y., Song M.J., Ko K., Oh J.W., Kang H.S. Interleukin-24 suppresses the growth of vascular smooth muscle cells by inhibiting H(2)O(2)-induced reactive oxygen species production. Pharmacology, 2012; 90 (5-6): 332–341. doi: 10.1159/000343242

106. Mantani P.T., Dunér P., Bengtsson E., Ljungcrantz I., Sundius L., To F., Nilsson J., Björkbacka H., Fredrikson G.N. Interleukin-25 (IL-25) has a protective role in atherosclerosis development in the aortic arch in mice. J. Biol. Chem., 2018; 293 (18): 6791–6801. doi: 10.1074/jbc.RA117.000292

107. Mantani P.T., Dunér P., Bengtsson E., Alm R., Ljungcrantz I., Söderberg I., Sundius L., To F., Nilsson J., Björkbacka H., Fredrikson G.N. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice. PLoS One, 2015; 10 (1): e0117255. doi: 10.1371/journal.pone.0117255

108. Yoshida H., Hunter C.A. The immunobiology of interleukin-27. Annu. Rev. Immunol., 2015; 33: 417– 443. doi: 10.1146/annurev-immunol-032414-112134

109. Koltsova E.K., Kim G., Lloyd K.M., Saris C.J., von Vietinghoff S., Kronenberg M., Ley K. Interleukin-27 receptor limits atherosclerosis in Ldlr-/-mice. Circ. Res., 2012; 111 (10): 1274–1285. doi: 10.1161/CIRCRESAHA.112.277525

110. Hirase T., Hara H., Miyazaki Y., Ide N., Nishimoto-Hazuku A., Fujimoto H., Saris C.J., Yoshida H., Node K. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am. J. Physiol. Heart Circ. Physiol., 2013; 305 (3): H420– Н429. doi: 10.1152/ajpheart.00198.2013

111. Park M.H., Song M.J., Cho M.C., Moon D.C., Yoon D.Y., Han S.B., Hong J.T. Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology, 2012; 135 (1): 63–72. doi: 10.1111/j.1365-2567.2011.03513.x

112. Zheng C., Zheng L., Yoo J.K., Guo H., Zhang Y., Guo X., Kang B., Hu R., Huang J.Y., Zhang Q., Liu Z., Dong M., Hu X., Ouyang W., Peng J., Zhang Z. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell, 2017; 169 (7): 1342–1356. doi: 10.1016/j.cell.2017.05.035

113. Nold-Petry C.A., Nold M.F., Zepp J.A., Kim S.H., Voelkel N.F., Dinarello C.A. IL-32-dependent effects of IL-1beta on endothelial cell functions. Proc. Natl. Acad. Sci. USA, 2009; 106 (10): 3883–3888. doi: 10.1073/pnas.0813334106

114. Hong J.T., Son D.J., Lee C.K., Yoon D.Y., Lee D.H., Park M.H. Interleukin 32, inflammation and cancer. Pharmacol. Ther., 2017; 174: 127–137. doi: 10.1016/j.pharmthera.2017.02.025

115. Zaidan S.M., Leyre L., Bunet R., Larouche-Anctil E., Turcotte I., Sylla M., Chamberland A., Chartrand-Lefebvre C., Ancuta P., Routy J.P., Baril J.G., Trottier B., MacPherson P., Trottier S., Harris M., Walmsley S., Conway B., Wong A., Thomas R., Kaplan R.C., Landay A.L., Durand M., Chomont N., Tremblay C.L., El-Far M.; Canadian HIV and Aging Cohort Study. Upregulation of IL-32 isoforms in virologically suppressed HIV-infected individuals: potential role in persistent inflammation and transcription from stable HIV-1 reservoirs. J. Acquir. Immune Defic Syndr., 2019; 82 (5): 503–513. doi: 10.1097/QAI.0000000000002185

116. Mohammad-Rezaei M., Ahmadi R., Rafiei A., Khaledifar A., Fattahi S., Samiei-Sefat A., Emami S., Bagheri N. Serum levels of IL-32 in patients with coronary artery disease and its relationship with the serum levels of IL-6 and TNF-α. Mol. Biol. Rep., 2021; 48 (5): 4263–4271. doi: 10.1007/s11033-021-06441-7

117. Yang Z., Shi L., Xue Y., Zeng T., Shi Y., Lin Y., Liu L. Interleukin-32 increases in coronary arteries and plasma from patients with coronary artery disease. Clin .Chim. Acta, 2019; 497: 104–109. doi: 10.1016/j.cca.2019.07.019

118. Heinhuis B., Popa C.D., van Tits B.L., Kim S.H., Zeeuwen P.L., van den Berg W.B., van der Meer J.W., van der Vliet J.A., Stalenhoef A.F., Dinarello C.A., Netea M.G., Joosten L.A. Towards a role of interleukin-32 in atherosclerosis. Cytokine, 2013; 64 (1): 433–440. doi: 10.1016/j.cyto.2013.05.002

119. Choi Y.S., Choi H.J., Min J.K., Pyun B.J., Maeng Y.S., Park H., Kim J., Kim Y.M., Kwon Y.G. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood, 2009; 114 (14): 3117– 3126. doi: 10.1182/blood-2009-02-203372

120. Cao K., Liao X., Lu J., Yao S., Wu F., Zhu X., Shi D., Wen S., Liu L., Zhou H. IL-33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J. Neuroinflammation., 2018; 15 (1): 136. doi: 10.1186/s12974-018-1169-6

121. McLaren J.E., Michael D.R., Salter R.C., Ashlin T.G., Calder C.J., Miller A.M., Liew F.Y., Ramji D.P. IL-33 reduces macrophage foam cell formation. J. Immunol., 2010; 185 (2): 1222–1229. doi: 10.4049/jimmunol.1000520

122. Zhang H.F., Wu M.X., Lin Y.Q., Xie S.L., Huang T.C., Liu P.M., Nie R.Q., Meng Q.Q., Luo N.S., Chen Y.X., Wang J.F. IL-33 promotes IL-10 production in macrophages: a role for IL-33 in macrophage foam cell formation. Exp. Mol. Med., 2017; 49 (11): e388. doi: 10.1038/emm.2017.183

123. Zheng X., Gong L., Zhang S., Wu W. Epicardial adipose tissue thickness and plasma interleukin-35 predict acute myocardial infarction in patients with coronary artery disease. Int. J. Clin. Exp. Med., 2018; 11: 13456–13467.

124. Jia D., Jiang H., Weng X., Wu J., Bai P., Yang W., Wang Z., Hu K., Sun A., Ge J. Interleukin-35 promotes macrophage survival and improves wound healing after myocardial infarction in mice. Circ. Res., 2019; 124 (9): 1323–1336. doi: 10.1161/CIRCRESAHA

125. Liu J., Lin J., He S., Wu C., Wang B., Liu J., Duan Y., Liu T., Shan S., Yang K., Dong N., Ji Q., Huang K., Li D. Transgenic overexpression of IL-37 protects against atherosclerosis and strengthens plaque stability. Cell. Physiol. Biochem., 2018; 45 (3): 1034– 1050. doi: 10.1159/000487344

126. McCurdy S., Liu C.A., Yap J., Boisvert W.A. Potential role of IL-37 in atherosclerosis. Cytokine, 2017; 122: 154169. doi: 10.1016/j.cyto.2017.09.025

127. Chai M., Ji Q., Zhang H., Zhou Y., Yang Q., Zhou Y., Guo G., Liu W., Han W., Yang L., Zhang L., Liang J., Liu Y., Shi D., Zhao Y. The protective effect of interleukin-37 on vascular calcification and atherosclerosis in apolipoprotein E-deficient mice with diabetes. J. Interferon Cytokine Res., 2015; 35 (7): 530–539. doi: 10.1089/jir.2014.0212

128. Flusberg D.A., Sorger P.K. Surviving apoptosis: life-death signaling in single cells. Trends Cell. Biol., 2015; 25 (8): 446–458. doi: 10.1016/j.tcb.2015.03.003

129. Ślebioda T.J., Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm., 2014; 2014: 325129. doi: 10.1155/2014/325129

130. Nash M., McGrath J.P., Cartland S.P., Patel S., Kavurma M.M. Tumour necrosis factor superfamily members in ischaemic vascular diseases. Cardiovasc. Res., 2019; 115 (4): 713–720. doi: 10.1093/cvr/cvz042

131. Mackesy D.Z., Goalstone M.L. Extracellular signal-regulated kinase-5: Novel mediator of insulin and tumor necrosis factor α-stimulated vascular cell adhesion molecule-1 expression in vascular cells. J. Diabetes, 2014; 6 (6): 595–602. doi: 10.1111/1753-0407.12132

132. Hashizume M., Mihara M. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine, 2012; 58 (3): 424–430. doi: 10.1016/j.cyto.2012.02.010

133. Boshuizen M.C., de Winther M.P. Interferons as essential modulators of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2015; 35 (7): 1579–1588. doi: 10.1161/ATVBAHA.115.305464

134. Zhou Q.D., Chi X., Lee M.S., Hsieh W.Y., Mkrtchyan J.J., Feng A.C., He C., York A.G., Bui V.L., Kronenberger E.B., Ferrari A., Xiao X., Daly A.E., Tarling E.J., Damoiseaux R., Scumpia P.O., Smale S.T., Williams K.J., Tontonoz P., Bensinger S.J. Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins. Nat. Immunol., 2020; 21 (7): 746–755. doi: 10.1038/s41590-020-0695-4

135. Ranjbaran H., Sokol S.I., Gallo A., Eid R.E., Iakimov A.O, D’Alessio A., Kapoor J.R., Akhtar S., Howes C.J., Aslan M., Pfau S., Pober J.S., Tellides G. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J. Immunol., 2007; 178: 592–604. doi: 10.4049/jimmunol.178.1.592

136. Serralheiro P., Soares A., Costa Almeida C.M., Verde I. TGF-β1 in vascular wall pathology: unraveling chronic venous insufficiency pathophysiology. Int. J. Mol. Sci., 2017; 18 (12): 2534. doi: 10.3390/ijms18122534

137. Chen P.Y., Qin L., Li G., Wang Z., Dahlman J.E., Malagon-Lopez J., Gujja S., Cilfone N.A., Kauffman K.J., Sun L., Sun H., Zhang X., Aryal B., Canfran-Duque A., Liu R., Kusters P., Sehgal A., Jiao Y., Anderson D.G., Gulcher J., Fernandez-Hernando C., Lutgens E., Schwartz M.A., Pober J.S., Chittenden T.W., Tellides G., Simons M.. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab., 2019; 1: 912–926. doi: 10.1038/s42255-019-0102-3

138. Ligi D., Croce L., Mosti G., Raffetto J.D., Mannello F. chronic venous insufficiency: transforming growth factor-β isoforms and soluble endoglin concentration in different states of wound healing. Int. J. Mol. Sci., 2017; 18 (10): 2206. doi: 10.3390/ijms18102206

139. Serralheiro P., Soares A., Costa Almeida C.M., Verde I. TGF-β1 in vascular wall pathology: unraveling chronic venous insufficiency pathophysiology. Int. J. Mol. Sci., 2017; 18: 2534. doi: 10.3390/ijms18122534

140. Gong D., Shi W., Yi S.-ju, Chen H., Groffen J., Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation BMC. Immunology, 2012; 13: 31. doi: 10.1186/1471-2172-13-31

141. Ramji D.P., Davies T.S. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev., 2015; 26 (6): 673–685. doi: 10.1016/j.cytogfr.2015.04.003

142. Adela R., Banerjee S.K. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J. Diabetes Res., 2015; 2015: 490842. doi: 10.1155/2015/490842

143. Wischhusen J., Melero I., Fridman W.H. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front. Immunol., 2020; 11: 951. doi: 10.3389/fimmu.2020.00951

144. Fredriksson L., Li H., Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Reviews, 2004; 115: 97–204. doi: 10.1016/j.cytogfr.2004.03.007

145. Battegay E. J., Rupp J., Iruela-Arispe L., Sage E.H., Pech M. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell. Biol., 1994; 125: 917–928. doi: 10.1083/jcb.125.4.917

146. Hellberg C., Ostman A., Heldin C.H. PDGF and vessel maturation. Recent Results Cancer Res., 2010; 180: 103–114. doi: 10.1007/978-3-540-78281-0_7

147. Martino M.M., Brkic S., Bovo E., Burger M., Schaefer D.J., Wolff T., Gürke L., Briquez P.S., Larsson H.M., Gianni-Barrera R., Hubbell J.A., Banfi A. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front. Bioeng. Biotechnol., 2015; 3: 45. doi: 10.3389/fbioe.2015.00045

148. Kalra K., Eberhard J., Farbehi N., Chong J.J., Xaymardan M. Role of PDGF-A/B ligands in cardiac repair after myocardial infarction. Front. Cell Dev. Biol., 2021; 9: 669188. doi: 10.3389/fcell.2021.669188

149. Martínez C.E., Smith C., Palma Alvarado V.A. The influence of platelet-derived products on angiogenesis and tissue repair: A concise update. Front. Physiol., 2015; 6: 159973. doi: 10.3389/fphys.2015.00290

150. Kemp S.S., Lin P.K., Sun Z., Castaсo M.A., Yrigoin K., Penn M.R., Davis G.E. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front. Cell Dev. Biol., 2022; 10: 943533. doi: 10.3389/fcell.2022.943533

151. Stratman A.N., Davis G.E. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc. Microanal., 2012; 18 (1): 68–80. doi: 10.1017/S1431927611012402

152. Goumans M.J., Ten Dijke P. TGF-β signaling in control of cardiovascular function. Cold Spring. Harb. Perspect. Biol., 2018; 10 (2): a022210. doi: 10.1101/cshperspect.a022210

153. Shah P., Keppler L., Rutkowski J. A review of platelet derived growth factor playing pivotal role in bone regeneration. J. Oral Implantol., 2014; 40 (3): 330–340. doi: 10.1563/AAID-JOI-D-11-00173

154. Bolshakov I.N., Gornostaev L.M., Fominykh O.I., Svetlakov A.V. Synthesis, chemical and biomedical aspects of the use of sulfated chitosan. Polymers (Basel), 2022; 14 (16): 3431. doi: 10.3390/polym14163431

155. Калинин Р.Е., Грязнов С.В., Никифоров А.А., Камаев А.А., Швальб А.П., Слепнев А.А. Полиморфизм гена синтазы азота и эндотелина-1 при хронической венозной недостаточности. Российский медико-биологический вестник имени академика И.П. Павлова, 2015; 16 (4): 97–102. doi: 10.17816/PAVLOVJ2015497-102

156. Pavlides S., Gutierrez-Pajares J.L., Katiyar S., Jasmin J.F., Mercier I., Walters R., Pavlides C., Pestell R.G., Lisanti M.P., Frank P.G. Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell. Tissue Res., 2014; 358 (3): 821–831. doi: 10.1007/s00441-014-2008-4

157. Bednarska-Chabowska D., Adamiec R., Pawlikowski A., Adamiec J. Selected problems of endothelial functions. II. The role of the selectines in the damage of vascular endothelium. Pol. Merkur. Lekarski, 2002; 12: 329–332.

158. Signorelli S.S., Anzaldi M., Libra M., Navolanic P.M., Malaponte G., Mangano K., Quattrocchi C., di Marco R., Fiore V., Neri S. Plasma levels of inflammatory biomarkers in peripheral arterial disease: results of a cohort study. Angiology, 2016; 67 (9): 870–874. doi: 10.1177/0003319716633339

159. Al-Ghurabi M.E., Muhi A.A., Al-Mudhafar D.H. Vascular cell adhesion molecule-1 and endothelial leukocyte adhesion molecule-1 as markers of atherosclerosis of NIDDM. Amer. J. Life Sci., 2015; 3 (1): 22–26. doi: 10.11648/j.ajls.20150301.15

160. Tsai M.K., Hsieh C.C., Kuo H.F., Lee M.S., Huang M.Y., Kuo C.H., Hung C.H. Effect of prostaglandin I2 analogs on monocyte chemoattractant protein-1 in human monocyte and macrophage. Clin. Exp. Med., 2015; 15 (3): 245–253. doi: 10.1007/s10238-014-0304-7

161. Qiao J.H., Tripathi J., Mishra N.K., Cai Y., Tripathi S., Wang X.P., Imes S., Fishbein M.C., Clinton S.K., Libby P., Lusis A.J., Rajavashisth T.B. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am. J. Pathol., 1997; 150: 1687–1699.

162. Kleinbongard P., Heusch G., Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol. Ther., 2010; 127: 295–314. doi: 10.1016/j.pharmthera.2010.05.002

163. Cossette É., Cloutier I., Tardif K., DonPierre G., Tanguay J.F. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein. Mol. Cell. Biochem., 2013; 373 (1-2): 137–147. doi: 10.1007/s11010-012-1482-9.

164. Wang L., Tang C. Targeting platelet in atherosclerosis plaque formation: current knowledge and future perspectives. Int. J. Mol. Sci., 2020; 21: 9760. doi: 10.3390/ijms21249760

165. Folco E.J., Sukhova G.K., Quillard T., Libby P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ. Res., 2014; 115 (10): 875–883. doi: 10.1161/CIRCRESA-HA.115.304437

166. Pagano P.J., Gutterman D.D. The adventitia: the outs and ins of vascular disease. Cardiovasc. Res., 2007; 75 (4): 636–639. doi: 10.1016/j.cardiores.2007.07.006

167. Edsfeldt A., Grufman H., Asciutto G., Nitulescu M., Persson A., Nilsson M., Nilsson J., Gonзalves I. Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis, 2015; 241 (2): 443–449. doi: 10.1016/j.atherosclerosis.2015.05.019

168. Voloshyna I., Littlefield M.J., Reiss A.B. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc. Med., 2014; 24 (1): 45–51. doi: 10.1016/j.tcm.2013.06.003

169. Eriksson E.E. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels as major entry pathways for leukocytes to advanced lesions. Circulation, 2011; 124 (19): 2129– 2138. doi: 10.1161/CIRCULATIONAHA.111.030627

170. Fallah A., Sadeghinia A., Kahroba H., Samadi A., Heidari H.R., Bradaran B., Zeinali S., Molavi O. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed. Pharmacother., 2019; 110: 775–785. doi: 10.1016/j.biopha.2018.12.022

171. Stenmark K., Yeager M., Kasmi K.C., Nozik-Grayck E., Gerasimovskaya E.V., Li M. The adventitia: essential regulator of vascular structure and function. Ann. Rev. Pysiol., 2013; 75: 23–47. doi: 10.1146/annurev-physiol-030212-183802

172. Tang W., Liu Z., Si Y. Tunica arterial adventitia: a new exploration in intimal hyperplasia. J. Vasc. Med. Surg., 2013; 1: 108. doi:10.4172/2329-6925.1000108

173. Campbell K.A., Lipinski M.J., Doran A.C., Skaflen M.D., Fuster V., McNamara C.A. Lymphocytes and adventitial immune response in atherosclerosis. Circ. Res., 2012; 110: 889–890. doi: 10.1161/CIR-CRESAHA.111.263186

174. Ogeng’o J., Ominde B.S., Ongeti K., Olabu B., Obimbo M., Mwachaka P. Reappraisal of the structure of arterial tunica adventitia and its involvement in atherosclerosis. Anatomy Journal of Africa, 2020; 6: 824–833. doi: 10.4314/aja.v6i1.150685

175. Ogeng’o J.A., Maseghe P., Ongeti K., Obimbo M., Olabu B. Tunica adventitia of the aorta in an active vascular compartment. Anat. J. Afr., 2015; 4: 617–623

176. Mulligan-Kehoe M.J., Simons M. Vasa vasora in normal and diseased arteries. Circulation, 2014; 129:,2557– 2566. doi: 10.1161/CIRCULATIONAHA.113.007189

177. Fugundes A., Pereira A.H., Correa K., de Oliveira M.T., Rodriguez R. Effects of removal of the adventitia of the descending aorta and structural alterations in the tunica media in pigs. Rev. Col. Bras. Circ., 2012; 39: 133–138.

178. Wang J.L., Ma S.Q., Li L., Liu G.Q., Hu W.C., Ma R. Correlation of inflammatory cells in adventitia and formation and extending of atherosclerotic lesions in coronary artery of apolipoprotein E Knockout mice. Chin. J. Physiol., 2013; 56: 77–82. doi: 10.4077/CJP.2013.BAA080

179. Tian J., Hu S., Sun Y., Yu H., Han X., Cheng W., Ban X., Zhang S., Yu B., Jang I.K. Vasa vasorum and plaque progression, and responses to atorvastatin in a rabbit model of atherosclerosis: contrast enhanced ultrasound imaging and intravascular ultrasound study. Heart, 2013; 99: 48–54. doi: 10.1136/heartjnl-2012-302775

180. Fitzgibbons T.P., Czech M.P. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J. Am. Heart Assoc., 2014; 3: e000582. doi: 10.1161/jaha.113.000582

181. Huh J.Y., Park Y.J., Ham M., Kim J.B. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells, 2014; 37: 365–371. doi: 10.14348/molcells.2014.0074


Рецензия

Для цитирования:


Большаков И.Н., Шиндякин Д.В., Кириченко А.К., Бахшян В.А., Архипкин С.В. Цитокиновые факторы роста в регуляции ангиогенеза и атерогенного воспаления в сосудистой стенке. Аналитический обзор. Часть 1. Атеросклероз. 2025;21(1):60-91. https://doi.org/10.52727/2078-256X-2025-21-1-60-91

For citation:


Bolshakov I.N., Shindyakin D.V., Kirichenko A.K., Bahshyan V.A., Arkhipkin S.V. Cytokine growth factors in the regulation of angiogenesis and atherogenic inflammation in the vascular wall. The role of polysaccharide polymers. Analytical review. Part 1. Ateroscleroz. 2025;21(1):60-91. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-1-60-91

Просмотров: 132


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)