Preview

Ateroscleroz

Advanced search

Profile of fatty acids of erythrocyte membranes, blood serum of patients with steatosis and steatohepatitis in fatty liver disease of various genesis

https://doi.org/10.52727/2078-256X-2025-21-1-6-22

Abstract

The aim of the study is to investigate the possibilities of using fatty acids of erythrocyte membranes and blood serum to differentiate steatosis and steatohepatitis in patients with fatty liver disease (FLD) of various origins. Material and methods. The study included 84 men with FLD of various origins (alcoholic, non-alcoholic, mixed, i.e. alcoholic + metabolic), average age 48.4 ± 13.9 years, fibrosis degree 0-1 (FibroScan® 502 Echosens, France). Using serum tests NashTest, AshTest as part of FibroMax, ActiTest as part of FibroTest (BioPredictive, France), 44 patients showed minimal necroinflammatory activity in the liver tissue (steatosis), and 40 patients showed pronounced necro- inflammatory activity (considered as steatohepatitis). The study of the composition of fatty acids of erythrocyte membrane, blood serum was carried out using gas chromatography/mass spectrometry – a system based on three Agilent 7000B quadrupoles (USA). Results. Fatty acids of erythrocyte membranes, significant for differentiation of steatohepatitis and steatosis in patients with FLD of various genesis, were established: levels of docosatetraenoic C22:4n-6 (p = 0.0001), arachidic C20:0 (p = 0.034) were significantly higher, and the content of pentadecanoic C15:0 (p=0.0006), 7-palmitoleic C16:1;7 (p = 0.0093), myristic C14:0 (p = 0.025), eicosapentaenoic C20:5n-3 (p = 0.032), hexadecadienoic acid C16:2 n-6 (p = 0.042) – lower in steatohepatitis than those in patients with liver steatosis. The greatest potential in distinguishing the degree of necroinflammatory activity in the liver was demonstrated by pentadecanoic acid C15:0 – AUC 0.736 (95 % CI 0.63–0.843), sensitivity 68.3 %, specificity 75.9 %. The created diagnostic panel of a combination of erythrocyte membrane fatty acids (C15:0, C14:0, C16:1;7) showed the highest sensitivity – 76.5 % with low specificity of 67.1 %. Conclusions. The identified features of the fatty acid profile of erythrocyte membranes and blood serum should be considered as promising biomarkers for the detection of steatohepatitis from the point of view of further research in this area.

About the Authors

M. V. Kruchinina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University” of the Ministry of Health of the Russian Federation
Russian Federation

Margarita V. Kruchinina, doctor of medical sciences, associate professor, head of the gastroenterology laboratory, leading researcher of the gastroenterology laboratory, professor of the department of propaedeutics of internal diseases

175/1, Boris Bogatkov st., Novosibirsk, 630089

52, Krasny ave., Novosibirsk, 630091



R. A. Bukarev
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences
Russian Federation

Rudolf A. Bukarev, clinical resident of the laboratory of gastroenterology

175/1, Boris Bogatkov st., Novosibirsk, 630089



M. V. Parulikova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences
Russian Federation

Marina V. Parulikova, senior lecturer of the department of education

175/1, Boris Bogatkov st., Novosibirsk, 630089



A. A. Gromov
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences
Russian Federation

Andrey A. Gromov, candidate of medical sciences, senior researcher at the laboratory of clinical biochemical and hormonal studies of therapeutic diseases, head of the thrombosis prevention center

175/1, Boris Bogatkov st., Novosibirsk, 630089



References

1. Rinella M.E., Lazarus J.V., Ratziu V., Francque S.M., Sanyal A.J., Kanwal F., Romero D., Abdelmalek M.F., Anstee Q.M., Arab J.P., Arrese M., Bataller R., Beuers U., Boursier J., Bugianesi E., Byrne C.D., Castro Narro G.E., Chowdhury A., Cortez-Pinto H., Cryer D.R., Cusi K., El-Kassas M., Klein S., Eskridge W., Fan J., Gawrieh S., Guy C.D., Harrison S.A., Kim S.U., Koot B.G., Korenjak M., Kowdley K.V., Lacaille F., Loomba R., Mitchell-Thain R., Morgan T.R., Powell E.E., Roden M., RomeroGуmez M., Silva M., Singh S.P., Sookoian S.C., Spearman C.W., Tiniakos D., Valenti L., Vos M.B., Wong V.W., Xanthakos S., Yilmaz Y., Younossi Z., Hobbs A., Villota-Rivas M., Newsome P.N.; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology, 2023; 78 (6): 1966–1986. doi: 10.1097/HEP.0000000000000520

2. Raikhelson K.L., Maevskaya M.V., Zharkova M.S., Grechishnikova V.R., Okovityi S.V., Deeva T.A., Marchenko N.V., Prashnova M.К., Ivashkin V.T. Steatotic liver disease: new nomenclature and its localization in the russian Federation. Russian Journal of Gastroenterology, Hepatology, Coloproctology, 2024; 34 (2): 35–44. (In Russ.) doi: 1010.22416/1382-4376-2024-961

3. Loomba R., Friedman S.L., Shulman G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 2021; 184 (10): 2537–2564. doi: 10.1016/j.cell.2021.04.015

4. Elsaid M.I., Bridges J.F.P., Li N., Rustgi V.K. Metabolic syndrome severity predicts mortality in nonalcoholic fatty liver disease. Gastro. Hep. Adv., 2022; 1 (3): 445–456. doi: 10.1016/j.gastha.2022.02.002

5. Hliwa A., Ramos-Molina B., Laski D., Mika A., Sledzinski T. The role of fatty acids in non-alcoholic fatty liver disease progression: an update. Int. J. Mol. Sci., 2021; 22 (13): 6900. doi: 10.3390/ijms22136900

6. Shroff H., VanWagner L.B. Cardiovascular disease in nonalcoholic steatohepatitis: screening and management. Curr. Hepatol. Rep., 2020; 19 (3): 315– 326. doi: 10.1007/s11901-020-00530-0

7. Dharmalingam M., Yamasandhi P.G. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J. Endocrinol. Metab., 2018; 22 (3): 421–428. doi: 10.4103/ijem.IJEM_585_17

8. Tapper E.B., Fleming C., Rendon A., Fernandes J., Johansen P., Augusto M., Nair S. The burden of nonalcoholic steatohepatitis: a systematic review of epidemiology studies. Gastro. Hep. Adv., 2022; 1 (6): 1049–1087. doi: 10.1016/j.gastha.2022.06.016

9. Galatou E., Mourelatou E., Hatziantoniou S., Vizirianakis I.S. Nonalcoholic steatohepatitis (NASH) and atherosclerosis: explaining their pathophysiology, association and the role of incretin-based drugs. Antioxidants (Basel), 2022; 11 (6): 1060. doi: 10.3390/antiox11061060

10. Dağ H., İncirkuş F., Dikker O. Atherogenic Index of Plasma (AIP) and its association with fatty liver in obese adolescents. Children (Basel), 2023; 10 (4): 641. doi: 10.3390/children10040641

11. Avanaki F.A., Esteghamati A. Atherogenic index of plasma is an independent predictor of metabolic-associated fatty liver disease in patients with type 2 diabetes. Eur. J. Med. Res., 2022; 27 (1): 112. doi: 10.1186/s40001-022-00731-x

12. Liu J., Zhou L., An Y., Wang Y., Wang G. The atherogenic index of plasma: A novel factor more closely related to non-alcoholic fatty liver disease than other lipid parameters in adults. Front. Nutr., 2022; 9: 954219. doi: 10.3389/fnut.2022.954219

13. Balta S. Atherosclerosis and non-alcoholic fatty liver disease. Angiology, 2022; 73 (8): 701–711. doi: 10.1177/00033197221091317

14. Wei S., Wang L., Evans P.C., Xu S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov. Today, 2024; 29 (3): 103910. doi: 10.1016/j.drudis.2024.103910

15. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis – 2021 update. J. Hepatol., 2021; 75 (3): 659–689. doi: 10.1016/j.jhep.2021.05.025

16. Chalasani N., Younossi Z., Lavine J.E., Charlton M., Cusi K., Rinella M., Harrison S.A., Brunt E.M., Sanyal A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 2018; 67 (1): 328–357. doi: 10.1002/hep.29367

17. Chen Z., Ma Y., Cai J., Sun M., Zeng L., Wu F., Zhang Y., Hu M. Serum biomarkers for liver fibrosis. Clin. Chim. Acta, 2022; 537: 16–25. doi: 10.1016/j.cca.2022.09.022

18. Long M.T., Gandhi S., Loomba R. Advances in non-invasive biomarkers for the diagnosis and monitoring of non-alcoholic fatty liver disease. Metabolism, 2020; 111: 154259. doi: 10.1016/j.metabol.2020.154259

19. Wong V.W.S., Adams L.A., de Lédinghen V., Wong G.L.H., Sookoian S. Noninvasive biomarkers in NAFLD and NASH – current progress and future promise. Nat. Rev. Gastroenterol. Hepatol., 2018; 15: 461–478. doi: 10.1038/s41575-018-0014-9

20. Yuan L., Terrrault N.A. PNPLA3 and nonalcoholic fatty liver disease: towards personalized medicine for fatty liver. Hepatobiliary Surg. Nutr., 2020; 9 (3): 353–356. doi: 10.21037/hbsn.2019.10.35

21. Ferraioli G., Monteiro L.B.S. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol., 2019; 25: 6053–6062. doi: 10.3748/wjg.v25.i40.6053

22. Peng C., Stewart A.G., Woodman O.L., Ritchie R.H., Qin C.X. Non-alcoholic steatohepatitis: A review of its mechanism, models and medical treatments. Front. Pharmacol., 2020; 11: 1864. doi: 10.3389/fphar.2020.603926

23. Masarone M., Troisi J., Aglitti A., Torre P., Colucci A., Dallio M., Federico A., Balsano C., Persico M. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics, 2021; 17: 12. doi: 10.1007/s11306-020-01756-1

24. Tavares De Almeida I., Cortez-Pinto H., Fidalgo G., Rodrigues D., Camilo M.E. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis. Clin. Nutr., 2002; 21: 219–223. doi: 10.1054/clnu.2001.0529

25. Zhou Y., Orešič M., Leivonen M., Gopalacharyulu P., Hyysalo J., Arola J., Verrijken A., Francque S., Van Gaal L., Hyötyläinen T., Yki-Järvinen H. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin. Gastroenterol. Hepatol., 2016; 14 (10): 1463–1472.e6. doi: 10.1016/j.cgh.2016.05.046

26. Feng R., Luo C., Li C., Du S., Okekunle A.P., Li Y., Chen Y., Zi T., Niu Y. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: A case-Control study. Lipids Health Dis., 2017; 16 (1): 165. doi: 10.1186/s12944-017-0551-1

27. Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K., Contos M.J., Sterling R.K., Fuchs M., Zhou H., Watkins S.M., Sanyal A.J. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 2009; 50 (6): 1827–1838. doi: 10.1002/hep.23229

28. Calder P.C. Functional roles of fatty acids and their effects on human health. JPEN J. Parenter. Enteral. Nutr., 2015; 39 (1 Suppl): 18S–32S. doi: 10.1177/0148607115595980.

29. Ivashkin V.T., Maevskaya M.V., Zharkova M.S., Kotovskaya Yu.V., Tkacheva O.N., Troshina E.A., Shestakova M.V., Maev I.V., Breder V.V., Gheivandova N.I., Doshchitsin V.L., Dudinskaya E.N., Ershova E.V., Kodzoeva Kh.B., Komshilova K.A., Korochanskaya N.V., Mayorov A.Yu., Mishina E.E., Nadinskaya M.Yu., Nikitin I.G., Pogosova N.V., Tarzimanova A.I., Shamkhalova M.Sh. Clinical practice guidelines of the Russian Scientific Liver Society, Russian Gastroenterological Association, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians and National Society for preventive cardiology on diagnosis and treatment of non-alcoholic liver disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology, 2022; 32 (4): 104–140. (In Russ.) doi: 10.22416/1382-4376-2022-32-4-104-140

30. Alcoholic liver disease (ALD) in adults. Clinical guidelines. 2021–2022–2023. Available at: http://disuria.ru/_ld/12/1219_kr21K70MZ.pdf (In Russ.)

31. Mychka V.B., Zhernakova Yu.V., Chazova I.E. Recommendations of experts from the All-Russian Scientific Society of Cardiologists on the diagnosis and treatment of metabolic syndrome (second revision). Doctor.Ru, 2010; 3 (54): 15–18. (In Russ.)

32. Munteanu M., Tiniakos D., Anstee Q., Charlotte F., Marchesini G., Bugianesi E., Trauner M., Romero Gomez M., Oliveira C., Day C., Dufour J.F., Bellentani S., Ngo Y., Traussnig S., Perazzo H., Deckmyn O., Bedossa P., Ratziu V., Poynard T.; FLIP Consortium and the FibroFrance Group. Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference. Aliment. Pharmacol. Ther., 2016; 44 (8): 877–889. doi: 10.1111/apt.13770.

33. Kruchinina M.V., Kruchinin V.N., Prudnikova Ya.I., Gromov A.A., Shashkov M.V., Sokolova A.S. Study of the level of fatty acids in erythrocyte membranes and serum of patients with colorectal cancer in Novosibirsk. Advances in Molecular Oncology, 2018; 5 (2): 50–61 (In Russ.) doi: 10.17650/2313-805X-2018-5-2-50-61

34. Breiman L. Random forests. Machine Learning, 2001; 45: 5–32. doi: 10.1023/A:1010933404324

35. Wang X., Cao Y., Fu Y., Guo G., Zhang X. Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease. Lipids Health Dis., 2011; 10: 234. doi: 10.1186/1476-511X-10-234

36. Rada P., González-Rodríguez Á., García-Monzуn C., Valverde Á.M. Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis., 2020; 11: 1–15. doi: 10.1038/s41419-020-03003-w

37. Feng R., Luo C., Li C., Du S., Okekunle A.P., Li Y., Chen Y., Zi T., Niu Y. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: A case-Control study. Lipids Health Dis., 2017; 16 (1): 165. doi: 10.1186/s12944-017-0551-1

38. Yamada K., Mizukoshi E., Sunagozaka H., Arai K., Yamashita T., Takeshita Y., Misu H., Takamura T., Kitamura S., Zen Y., Nakanuma Y., Honda M., Kaneko S. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int., 2015; 35 (2): 582–590. doi: 10.1111/liv.12685.

39. Yoo W., Gjuka D., Stevenson H.L., Song X., Shen H., Yoo S.Y., Wang J., Fallon M., Ioannou G.N., Harrison S.A., Beretta L. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS One, 2017; 12 (12): e0189965. doi: 10.1371/journal.pone.0189965

40. Chen J.J., Fan Y., Boehning D. Regulation of dynamic protein s-acylation. Front. Mol. Biosci., 2021; 8: 656440. doi: 10.3389/fmolb.2021.656440

41. Powell E.E. A new treatment and updated clinical practice guidelines for MASLD. Nat. Rev. Gastroenterol. Hepatol., 2025; 22 (2): 88–89. doi: 10.1038/s41575-024-01014-y

42. Goldberg I.J., Ginsberg H.N. Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology, 2006; 130: 1343– 1346. doi: 10.1053/j.gastro.2006.02.040

43. Pfaffenbach K.T., Gentile C.L., Nivala A.M., Wang D., Wei Y., Pagliassotti M.J. Linking endoplasmic reticulum stress to cell death in hepatocytes: Roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am. J. Physiol. Endocrinol. Metab., 2010; 298: E1027–E1035. doi: 10.1152/ajpendo.00642.2009

44. Chiappini F., Coilly A., Kadar H., Gual P., Tran A., Desterke C., Samuel D., Duclos-Vallée J.C., Touboul D., Bertrand-Michel J., Brunelle A., Guettier C., Le Naour F. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci. Rep., 2017; 7: 46658. doi: 10.1038/srep46658

45. Herrera-Marcos L.V., Arbones-Mainar J.M., Osada J. Lipoprotein lipidomics as a frontier in non-alcoholic fatty liver disease biomarker discovery. Int. J. Mol. Sci., 2024; 25 (15): 8285. doi: 10.3390/ijms25158285

46. Syed-Abdul M.M. Lipid metabolism in metabolic-associated steatotic liver disease (MASLD). Metabolites, 2023; 14 (1): 12. doi: 10.3390/metabo14010012

47. Czumaj A., Śledziński T. Biological role of unsaturated fatty acid desaturases in health and disease. Nutrients, 2020; 12: 356. doi: 10.3390/nu12020356


Review

For citations:


Kruchinina M.V., Bukarev R.A., Parulikova M.V., Gromov A.A. Profile of fatty acids of erythrocyte membranes, blood serum of patients with steatosis and steatohepatitis in fatty liver disease of various genesis. Ateroscleroz. 2025;21(1):6-22. (In Russ.) https://doi.org/10.52727/2078-256X-2025-21-1-6-22

Views: 97


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)