Lipid metabolism parameters and alcohol consumption among men in Arkhangelsk, Russia: The Know Your Heart study
https://doi.org/10.52727/2078-256X-2024-20-3-276-290
Abstract
Aim. To assess the association between levels of alcohol consumption and lipid metabolism parameters among adult men.
Materials and methods. The study included 881 men aged 35–69 from the general population of Arkhangelsk, who participated in the 2015–17 Know Your Heart study, and 161 men who received inpatient treatment for alcohol-related diagnoses (narcology patients). Participants were divided into five levels of alcohol consumption: non-drinkers, non-problem (infrequent moderate consumption), hazardous (frequent consumption in doses hazardous to health), harmful (prenosological), and narcology patients. Using multivariate linear regressions, we analyzed differences between these groups in atherogenic lipid fractions (total cholesterol [TC], triglycerides [TG], low-density lipoprotein [LDL], apolipoprotein B [ApoB], remnant cholesterol, and non-HDL cholesterol, lipoprotein(a)) (Lp(a)), antiatherogenic lipid fractions (high-density lipoprotein [HDL], apolipoprotein A1 [апо A1]), and in ApoB/апо A1 ratio.
Results. Compared with non-problem drinkers, hazardous drinkers had higher mean levels of HDL by 0.22 mmol/L, HDL by 0.07 mmol/L, and ApoB by 0.04 g/L. Among harmful drinkers, mean HDL was higher by 0.15 mmol/L and апо A1 by 0.08 g/L, but the ApoB/апо A1 ratio was lower by 0.06. Among narcology patients, mean TC levels were lower by 0.42 mmol/L, LDL by 0.41 mmol/L, ApoB by 0.09 g/L, ApoB/апо A1 by 0.08, and non-HDL by 0.45 mmol/L, but TG was higher by 0.15 mmol/L. Lp(a) in this group was higher by 0.29 mg/dl only after adjustment for markers of liver function. Non-drinkers had on average lower levels of TC by 0.29 mmol/L, HDL by 0.11 mmol/L, and апо A1 by 0.08 g/L.
Conclusions. Compared with non-problem drinkers, hazardous drinkers had elevated levels of both atherogenic and antiatherogenic lipid fractions, hazardous drinkers had only elevated levels of antiatherogenic fractions, and narcology patients had the lowest levels of atherogenic lipid fractions but elevated TG levels. Therefore, lipid profiles may reflect the level of alcohol consumption, which should be taken into account when assessing cardiovascular risk.
About the Authors
U. G. GuseinovaRussian Federation
Ulker G. Guseinova, postgraduate student, department of pathological physiology
51, Troitsky av., Arkhangelsk, 163000
N. A. Mitkin
Russian Federation
Nikita A. Mitkin, junior researcher, international research competence centre
51, Troitsky av., Arkhangelsk, 163000
N. V. Solovieva
Russian Federation
Natalia V. Solovieva, doctor of medical sciences, professor, head of the department of pathological physiology
51, Troitsky av., Arkhangelsk, 163000
A. G. Soloviev
Russian Federation
Andrey G. Soloviev, doctor of medical sciences, professor, head of the department of psychiatry and clinical psychology
51, Troitsky av., Arkhangelsk, 163000
O. A. Mirolyubova
Russian Federation
Olga A. Mirolyubova, doctor of medical sciences, professor, head of the department of faculty therapy
51, Troitsky av., Arkhangelsk, 163000
S. K. Malyutina
Russian Federation
Sofia K. Malyutina, doctor of medical sciences, рrofessor, head of the laboratory of etiopathogenesis and clinics of internal diseases
175/1, Boris Bogatkov str., Novosibirsk, 630089
A. V. Kudryavtsev
Russian Federation
Alexandr V. Kudryavtsev, PhD, head of international research competence centre
51, Troitsky av., Arkhangelsk, 163000
References
1. GBD 2020 Alcohol Collaborators. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet, 2022; 400 (10347): 185–235. doi: 10.1016/S0140-6736(22)00847-9
2. World Health Organization. Global status report on alcohol and health 2018. WHO, 2018. 472 p.
3. Rehm J., Shield K.D., Bunova A., FerreiraBorges C., Franklin A., Gornyi B., Rovira P., Neufeld M. Prevalence of alcohol use disorders in primary health-care facilities in Russia in 2019. Addiction, 2022; 117 (6): 1640–1646. doi: 10.1111/add.15816
4. Zamiatnina E.S. The structure of directly related alcohol mortality In Russia from 2011 to 2021. Demographic Review, 2022; 9 (2): 102–118. (In Russ.)]. doi: 10.17323/demreview.v9i2.16208
5. Kuznetsova P.O. Alcohol mortality in Russia: assessment with representative survey data. Population and Economics, 2020; 4(3). doi: 10.3897/popecon.4.e51653
6. You M., Arteel G.E. Effect of ethanol on lipid metabolism. J. Hepatol., 2019; 70 (2): 237–248. doi: 10.1016/j.jhep.2018.10.037
7. Ezhov M.V., Kukharchuk V.V., Sergienko I.V., Alieva A.S., Antsiferov M.B., Ansheles A.A., Arabidze G.G., Aronov D.M., Arutyunov G.P., Akhmedzhanov N.M., Balakhonova T.V., Barbarash O.L., Boytsov S.A., Bubnova M.G., Voevoda M.I., Galstyan G.R., Galyavich A.S., Gornyakova N.B., Gurevich V.S., Dedov I.I., Drapkina O.M., Duplyakov D.V., Eregin S.Ya., Ershova A.I., Irtyuga O.B., Karpov R.S., Karpov Yu.A., Kachkovsky M.A., Kobalava Zh.D., Koziolova N.A., Konovalov G.A., Konstantinov V.O., Kosmacheva E.D., Kotovskaya Yu.V., Martynov A.I., Meshkov A.N., Nebieridze D.V., Nedogoda S.V., Obrezan A.G., Oleinikov V.E., Pokrovsky S.N., Ragino Yu.I., Rotar O.P., Skibitsky V.V., Smolenskaya O.G., Sokolov A.A., Sumarokov A.B., Filippov E., Halimov Yu.Sh., Chazova I.E., Shaposhnik I.I., Shestakova M.V., Yakushin S.S., Shlyakhto E.V. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology, 2023; 28 (5): 5471. (In Russ.)]. doi: 10.15829/1560-4071-2023-5471
8. Steiner J.L., Lang C.H. Alcohol, adipose tissue and lipid dysregulation. Biomolecules, 2017; 7 (1): 16. doi: 10.3390/biom7010016
9. Li B., Lei S S., Su J., Cai X.M., Xu H., He X., Chen Y.H., Lu H. X., Li H., Qian L.Q., Zheng X., Lv G.Y., Chen S. H. Alcohol induces more severe fatty liver disease by influencing cholesterol metabolism. Evid. Based Complement. Alternat. Med., 2019; 2019: 7095684. doi: 10.1155/2019/7095684
10. Solovyeva N.V., Davidovich N.V., Solovyeva V.A., Bashilova E.N. Lipid metabolism and cytokine profile in patients with alcohol dependence and chronic hepatitis C. Journal of Medical and Biological Research, 2019; 7 (3): 327–337. (In Russ.)]. doi: 10.17238/issn2542-1298.2019.7.3.327
11. Mansour M., Tamim H., Nasreddine L., El Khoury C., Hwalla N., Chaaya M., Farhat A., Sibai A.M. Prevalence and associations of behavioural risk factors with blood lipids profile in Lebanese adults: findings from WHO STEPwise NCD crosssectional survey. BMJ Open, 2019; 9 (8): e026148. doi: 10.1136/bmjopen-2018-026148
12. Minzer S., Losno R.A., Casas R. The effect of alcohol on cardiovascular risk factors: is there new information? Nutrients, 2020; 12 (4): 912. doi: 10.3390/nu12040912
13. Valcin J.A., Udoh U.S., Swain T.M., Andringa K.K., Patel C.R., Al Diffalha S., Baker P.R.S., Gamble K.L., Bailey S.M. Alcohol and liver clock disruption increase small droplet macrosteatosis, alter lipid metabolism and clock gene mRNA rhythms, and remodel the triglyceride lipidome in mouse liver. Front. Physiol., 2020; 11: 1048. doi: 10.3389/fphys.2020.01048
14. Johnson E.L., Heaver S.L., Waters J.L., Kim B.I., Bretin A., Goodman A.L., Gewirtz A.T., Worgall T.S., Ley R.E. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat. Commun., 2020; 11 (1): 2471. doi: 10.1038/s41467-020-16274-w
15. O’Farrell F., Aleyakpo B., Mustafa R., Jiang X., Pinto R.C., Elliott P., Tzoulaki I., Dehghan A., Loh S.H.Y., Barclay J.W., Martins L.M., Pazoki R. Evidence for involvement of the alcohol consumption WDPCP gene in lipid metabolism, and liver cirrhosis. Sci. Rep., 2023; 13 (1): 20616. doi: 10.1038/s41598-023-47371-7
16. Guo Y., Livelo C., Melkani G.C. Time-restricted feeding regulates lipid metabolism under metabolic challenges. Bioessays, 2023; 45 (12): e2300157. doi: 10.1002/bies.202300157
17. Cook S., Malyutina S., Kudryavtsev A.V., Averina M., Bobrova N., Boytsov S., Brage S., Clark T.G., Diez Benavente E., Eggen A.E., Hopstock L.A., Hughes A., Johansen H., Kholmatova K., Kichigina A., Kontsevaya A., Kornev M., Leong D., Magnus P., Mathiesen E., McKee M., Morgan K., Nilssen O., Plakhov I., Quint J.K., Rapala A., Ryabikov A., Saburova L., Schirmer H., Shapkina M., Shiekh S., Shkolnikov V.M., Stylidis M., Voevoda M., Westgate K., Leon D.A. Know Your Heart: Rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35–69 years from two Russian cities, 2015-18. Wellcome Open Res., 2018; 3: 67. doi: 10.12688/wellcomeopenres.14619.3
18. Tomkins S., Saburova L., Kiryanov N., Andreev E., McKee M., Shkolnikov V., Leon D. A. Prevalence and socio-economic distribution of hazardous patterns of alcohol drinking: study of alcohol consumption in men aged 25-54 years in Izhevsk, Russia. Addiction, 2007; 102 (4): 544–553. doi: 10.1111/j.1360-0443.2006.01693.x
19. Ewing J.A. Detecting alcoholism. The CAGE questionnaire. JAMA, 1984; 252 (14): 1905–1907. doi: 10.1001/jama.252.14.1905
20. Neufeld M., Rehm J., Bunova A., Gil A., Gornyi B., Rovira P., Manthey J., Yurasova E., Dolgova S., Idrisov B., Moskvicheva M., Nabiullina G., Shegaym O., Zhidkova I., Ziganshina Z., Ferreira-Borges C.; the 2019/2020 RUS-AUDIT Collaborators & the RUSAUDIT Project Advisory Board. Validation of a screening test for alcohol use, the Russian Federation. Bull. World Health Organ., 2021; 99 (7): 496–505. doi: 10.2471/BLT.20.273227
21. Iakunchykova O., Averina M., Kudryavtsev A.V., Wilsgaard T., Soloviev A., Schirmer H., Cook S., Leon D.A. Evidence for a direct harmful effect of alcohol on myocardial health: a large cross-sectional study of consumption patterns and cardiovascular disease risk biomarkers from Northwest Russia, 2015 to 2017. J. Am. Heart. Assoc., 2020; 9 (1): e014491. doi: 10.1161/JAHA.119.014491
22. Mitkin N.A., Kirilkin G.E., Unguryanu T.N., Malyutina S., Cook S., Kudryavtsev A.V. The relationship between physical performance and alcohol consumption levels in Russian adults. Sci. Rep., 2024; 14 (1): 1417. doi: 10.1038/s41598-024-51962-3
23. Mitkin N.A., Unguryanu T.N., Malyutina S., Kudryavtsev A.V. Association between alcohol consumption and body composition in Russian adults and patients treated for alcohol-related disorders: The Know Your Heart Cross-Sectional Study. Int. J. Environ. Res. Public Health, 2023; 20 (4): 2905. doi: 10.3390/ijerph20042905
24. Reynolds K., Lewis B., Nolen J.D., Kinney G.L., Sathya B., He J. Alcohol consumption and risk of stroke: a meta-analysis. JAMA, 2003; 289 (5): 579–588. doi: 10.1001/jama.289.5.579
25. Lieber C.S. Alcohol and the liver: metabolism of alcohol and its role in hepatic and extrahepatic diseases. Mt. Sinai J. Med., 2000; 67 (1): 84–94.
26. Costanzo S., di Castelnuovo A., Donati M.B., Iacoviello L., de Gaetano G. Alcohol consumption and mortality in patients with cardiovascular disease: a meta-analysis. J. Am. Coll Cardiol., 2010; 55 (13): 1339–1347. doi: 10.1016/j.jacc.2010.01.006
27. Chen M., Zhong W., Xu W. Alcohol and the mechanisms of liver disease. J. Gastroenterol. Hepatol., 2023; 38 (8): 1233–1240. doi: 10.1111/jgh.16282
28. Osna N.A., Donohue T.M. Jr., Kharbanda K.K. Alcoholic liver disease: pathogenesis and current management. Alcohol Res., 2017; 38 (2): 147–161.
29. Sasaki-Tanaka R., Ray R., Moriyama M., Ray R.B., Kanda T. Molecular changes in relation to alcohol consumption and hepatocellular carcinoma. Int. J. Mol. Sci., 2022; 23: 17. doi: 10.3390/ijms23179679
30. Mathews M.J., Liebenberg L., Mathews E.H. The mechanism by which moderate alcohol consumption influences coronary heart disease. Nutr. J., 2015; 14: 33. doi: 10.1186/s12937-015-0011-6
31. Morgan T.R., Mandayam S., Jamal M.M. Alcohol and hepatocellular carcinoma. Gastroenterology, 2004; 127 (5): S87–S96. doi: 10.1053/j.gastro.2004.09.020
32. Badia R.R., Pradhan R.V., Ayers C.R., Chandra A., Rohatgi A. The relationship of alcohol consumption and HDL metabolism in the multiethnic dallas heart study. J. Clin. Lipidol., 2023; 17 (1): 124–130. doi: 10.1016/j.jacl.2022.10.008
33. Yaseen R.I., El-Leboudy M.H., El-Deeb H.M. The relation between апо B/ApoA-1 ratio and the severity of coronary artery disease in patients with acute coronary syndrome. Egypt. Heart J., 2021; 73 (1): 24. doi: 10.1186/s43044-021-00150-z
34. Nordestgaard B.G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ. Res., 2016; 118 (4): 547–563. doi: 10.1161/CIRCRESAHA.115.306249
35. Malaguarnera M., Vacante M., Russo C., Malaguarnera G., Antic T., Malaguarnera L., Bella R., Pennisi G., Galvano F., Frigiola A. Lipoprotein(a) in cardiovascular diseases. Biomed. Res. Int., 2013; 2013: 650989. doi: 10.1155/2013/650989
Review
For citations:
Guseinova U.G., Mitkin N.A., Solovieva N.V., Soloviev A.G., Mirolyubova O.A., Malyutina S.K., Kudryavtsev A.V. Lipid metabolism parameters and alcohol consumption among men in Arkhangelsk, Russia: The Know Your Heart study. Ateroscleroz. 2024;20(3):276-290. (In Russ.) https://doi.org/10.52727/2078-256X-2024-20-3-276-290