Association of variants of the APOE, CETP genes and the 9P21.3 chromosomal region with coronary heart disease, myocardial infarction and acute heart failure
https://doi.org/10.52727/2078-256X-2024-20-2-121-135
Abstract
A relevant task for the healthcare system is to identify the groups most predisposed to cardiovascular diseases (CVD) of atherosclerotic genesis. Risk stratification is an important component of choosing a management strategy for both CVD patients and those with risk factors. The individual risk of an unfavorable cardiovascular outcome is determined by genetic factors in addition to lifestyle factors.
The aim of the work was to examine the association of variants of the APOE, CETP and chromosomal region 9p21.3 with coronary heart disease (CHD), myocardial infarction (MI) and acute heart failure (ACF) in a sample of residents of Novosibirsk.
Material and methods. Sample: 2516 participants of the HAPIEE project (57.5 ± 0.2 years old, male to female ratio 45:55). The choice of the variants of the APOE, CETP and the chromosomal region 9p21.3 was due to their significant association with CVD according to several studies and meta-analyses. Genotyping of rs708272, rs429358 and rs7412 was performed by Real-Time PCR using TaqMan reagents; genotyping of rs1333049 was performed using a commercial KASP kit.
Results. Allele C of rs1333049 was associated with an increased risk of CHD, MI and AHF in the subgroup of men (p = 0,008) and in the general group (p = 0,002). In the general group, the incidence of CHD, MI and AHF was significantly lower in carriers of the G allele (odds ratio 0.748, 95 % confidence interval 0.606–0.924, p = 0.007). We confirmed the association of the ɛ2/ɛ4 genotype of the APOE gene with CHD, MI and AHF among males (p = 0.007) and in the whole study sample (p = 0.009). In the women subgroup the genotype ɛ2/ɛ2 (p < 0.0001) was associated with CHD, MI and AHF, while in carriers of the genotype ɛ3/ɛ3, the incidence of CHD, MI and AHF was significantly lower (odds ratio 0.675, 95 % confidence interval 0.509–0.894, p = 0,006).
Conclusions. This work shows the association of rs1333049 of chromosomal region 9p21.3 and rs429358&rs7412 of the APOE gene with the risk of CHD, MI and AHF in a sample of residents of Novosibirsk. These variants may be recommended for inclusion into a genetic risk score.
Keywords
About the Authors
S. E. SemaevRussian Federation
Sergey E. Semaev, junior researcher
laboratory of molecular genetic investigations of therapeutic diseases; laboratory of the study of monogenic forms of common human diseases
630089; 175/1, Boris Bogatkov str.; 630090; 10, Academician Lavrentiev av.; Novosibirsk
L. V. Shcherbakova
Russian Federation
Liliya V. Shcherbakova, researcher
laboratory of clinical-populational and prophylactic studies on internal and endocrine diseases
630089; 175/1, Boris Bogatkov str.; Novosibirsk
P. S. Orlov
Russian Federation
Pavel S. Orlov, researcher
laboratory of the molecular genetic investigations of the therapeutic diseases; laboratory of human molecular genetics
630089; 175/1, Boris Bogatkov str.; 630090; 10, Academician Lavrentiev av.; Novosibirsk
D. E. Ivanoshchuk
Russian Federation
Dinara E. Ivanoshchuk, researcher, junior researcher
laboratory of the molecular genetic investigations of the therapeutic diseases; laboratory of human molecular genetics
630089; 175/1, Boris Bogatkov str.; 630090; 10, Academician Lavrentiev av.; Novosibirsk
S. K. Malyutina
Russian Federation
Sofia K. Malyutina, PhD, MD, ScD, Professor, head of the laboratory
laboratory of etiopathogenesis and clinics of internal diseases
630089; 175/1, Boris Bogatkov str.; Novosibirsk
V. V. Gafarov
Russian Federation
Valery V. Gafarov, PhD, MD, ScD, Professor, head of the laboratory
laboratory psychological and sociological problems
630089; 175/1, Boris Bogatkov str.; Novosibirsk
M. I. Voevoda
Russian Federation
Mikhail I. Voevoda, a member of the Russian Academy of Sciences, PhD, MD, ScD, Professor, Scientific consultant
630090; 10, Academician Lavrentiev av.; Novosibirsk
Yu. I. Ragino
Russian Federation
Yulia I. Ragino, MD, professor, corresponding member of the Russian Academy of Sciences, head
630089; 175/1, Boris Bogatkov str.; Novosibirsk
E. V. Shakhtshneider
Russian Federation
Elena V. Shakhtshneider, candidate of medical sciences, MD, leader researcher, head of the laboratory
laboratory of the molecular genetic investigations of therapeutic disease; laboratory of the study of monogenic forms of human common disease
630089; 175/1, Boris Bogatkov str.; 630090; 10, Academician Lavrentiev av.; Novosibirsk
References
1. Nielsen S.H., Mouton A.J., DeLeon-Pennell K.Y., Genovese F., Karsdal M., Lindsey M. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix. Biol., 2019; 75-76: 43–47. doi: 10.1016/j.matbio.2017.12.001
2. Zhirov I.V., Nasonova S.N., Khalilova U.A., Osmolovskaya Y.F., Chaikovskaia O.I., Zhirova I.A., Gimadiev R.R., Kochetov A.G., Tereshchenko S.N. Acute heart failure: classification, diagnosis, general approaches to treatment. Consilium Medicum, 2021; 23 (10): 750–755. (In Russ.). doi: 10.26442/20751753.2021.10.200980
3. Kontsevaya A.V., Shalnova S.A., Drapkina O.M. ESSE-RF study: epidemiology and public health promotion. Cardiovascular Therapy and Prevention, 2021; 20 (5): 2987. (In Russ.). doi: 10.15829/1728-8800-2021-2987
4. Khera A.V., Emdin C.A., Drake I., Natarajan P., Bick A.G., Cook N.R., Chasman D.I., Baber U., Mehran R., Rader D.J., Fuster V., Boerwinkle E., Melander O., Orho-Melander M., Ridker P.M., Kathiresan S. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med., 2016; 375(24): 2349–2358. doi: 10.1056/NEJMoa1605086
5. Mega J.L., Stitziel N.O., Smith J.G., Chasman D.I., Caulfield M., Devlin J.J., Nordio F., Hyde C., Cannon C.P., Sacks F., Poulter N., Sever P., Ridker P.M., Braunwald E., Melander O., Kathiresan S., Sabatine M.S. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet, 2015; 385: 2264–2271. doi: 10.1016/S0140-6736(14)61730-X
6. Tada H., Melander O., Louie J.Z., Catanese J.J., Rowland C.M., Devlin J.J., Kathiresan S., Shiffman D. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur. Heart J., 2016; 37: 561–567. doi: 10.1093/eurheartj/ehv462
7. Shakhtshneider E.V., Orlov P.S., Shcherbakova L.V., Ivanoshchuk D.E., Malyutina S.K., Maksimov V.N., Gafarov V.V., Voevoda M.I. A panel of genetic markers for analyzing the risk of long-term adverse prognosis of cardiovascular diseases. Ateroscleroz, 2018; 14(3): 12–19. (In Russ.). doi: 10.15372/ATER20180302
8. Marias A.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology, 2019; 51 (2): 165–176. doi: 10.1016/j.pathol.2018.11.002
9. Khalil Y.A., Rabès J.P., Boileau C., Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis, 2021; 328: 11–22. doi: 10.1016/j.atherosclerosis.2021.05.007
10. Blokhina A.V., Ershova A.I., Kiseleva A.V., Sotnikova E.A., Zharikova A.A., Zaicenoka M, Vyatkin Y.V., Ramensky V.E., Kutsenko V.A., Shalnova S.A., Meshkov A.N., Drapkina O.M. Applicability of diagnostic criteria and high prevalence of familial dysbetalipoproteinemia in Russia: A pilot study. Int. J. Mol. Sci., 2023; 24 (17): 13159. doi: 10.3390/ijms241713159
11. Ershova A.I., Meshkov A.N., Bazhan S.S., Storozhok M.A., Efanov A.Y., Medvedeva I.V., Indukaeva E.V., Danilchenko Y.V., Kuzmina O.K., Barbarash O.L., Deev A.D., Shalnova S.A., Boytsov S.A. The prevalence of familial hypercholesterolemia in the West Siberian region of the Russian Federation: A substudy of the ESSE-RF. PLoS One, 2017; 12(7): e0181148. doi: 10.1371/journal.pone.0181148
12. Boytsov S.A., Drapkina O.M., Shlyakhto E.V., Konradi A.O., Balanova Yu.A., Zhernakova Yu.V., Metelskaya V.A., Oshchepkova E.V., Rotar O.P., Shalnova S.A. Epidemiology of Cardiovascular Diseases and their Risk Factors in Regions of Russian Federation (ESSE-RF) study. Ten years later. Cardiovascular Therapy and Prevention, 2021; 20 (5): 3007. (In Russ.). doi: 10.15829/1728-8800-2021-3007
13. Lumsden A.L., Mulugeta A., Zhou A., Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine, 2020: 59: 102954. doi: 10.1016/j.ebiom.2020.102954
14. Bruce C., Chouinard R.A. Jr., Tall A.R. Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport. Annu. Rev. Nutr., 1998; 18: 297–330. doi: 10.1146/annurev.nutr.18.1.297
15. Khera A.V., Cuchel M., de la Llera-Moya M., Rodrigues A., Burke M.F., Jafri K., French B.C., Phillips J.A., Mucksavage M.L., Wilensky R.L., Mohler E.R., Rothblat G.H., Rader D.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011; 364: 127–135. doi: 10.1056/NEJMoa1001689
16. Paththinige C.S., Sirisena N.D., Dissanayake V.H.W. Genetic determinants of inherited susceptibility to hypercholesterolemia – A comprehensive literature review. Lipids Health Dis., 2017; 16: 103. doi: 10.1186/s12944-017-0488-4
17. Iwanicka J., Iwanicki T., Niemiec P., Balcerzyk A., Krauze J., Górczy´nska-Kosiorz S., Ochalska-Tyka A., Grzeszczak W., Zak I. Relationship between CETP gene polymorphisms with coronary artery disease in Polish population. Mol. Biol. Rep., 2018; 45: 1929–1935. doi: 10.1007/s11033-018-4342-1
18. Arikan G.D., Isbir S., Yilmaz S.G., Isbir T. Characteristics of coronary artery disease patients who have a polymorphism in the cholesterol ester transfer protein (CETP) gene. In Vivo, 2019; 33: 787–792. doi: 10.21873/invivo.11540
19. Nagano M., Yamashita S., Hirano K., Takano M., Maruyama T., Ishihara M., Sagehashi Y., Kujiraoka T., Tanaka K., Hattori H., Sakai N., Nakajima N., Egashira T., Matsuzawa Y. Molecular mechanisms of cholesterol ester transfer protein deficiency in Japanese. J. Atheroscler. Thromb., 2004; 11: 110–121. doi: 10.5551/jat.11.110
20. Kuivenhoven J.A., de Knijff P., Boer J.M., Smalheer H.A., Botma G.J., Seidell J.C., Kastelein J.J., Pritchard P.H. Heterogeneity at the CETP gene locus: Influence on plasma CETP concentrations and HDL cholesterol levels. Arterioscler. Thromb. Vasc. Biol., 1997; 17: 560–568. doi: 10.1161/01.atv.17.3.560
21. Guo S.X., Yao M.H., Ding Y.S., Zhang J.Y., Yan Y.Z., Liu J.M., Zhang M., Rui D.S., Niu Q., Jia H., Guo H., Ma R.L. Associations of cholesteryl ester transfer protein TaqIB Polymorphism with the composite ischemic cardiovascular disease risk and HDL-C concentrations: A meta-analysis. Int. J. Env. Res. Public Health, 2016; 13: 882. doi: 10.3390/ijerph13090882
22. Vargas-Alarcon G., Perez-Mendez O., Herrera-Maya G., Garcia-Sanchez C., Martinez-Rios M.A., Peña-Duque M.A., Posadas-Sanchez R., Posadas-Romero C., Escobedo G., Fragoso J.M. CETP and LCAT gene polymorphisms are associated with high-density lipoprotein subclasses and acute coronary syndrome. Lipids, 2018; 53: 157–166. doi: 10.1002/lipd.12017
23. Anagnostopoulou K.K., Kolovou G.D., Kostakou P.M., Mihas C., Hatzigeorgiou G., Marvaki C., Degiannis D., Mikhailidis D.P., Cokkinos D.V. Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia. Lipids Health Dis., 2009; 8: 24. doi: 10.1186/1476-511X-8-24
24. Odorvas J.M., Cupples L.A., Corella D., Otvos J.D., Osgood D., Martinez A., Lahoz C., Coltell O., Wilson P.W., Schaefer E.J. Association of cholesteryl ester transfer protein—TaqI B polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: The Framingham study. Arter. Thromb. Vasc. Biol., 2000; 20: 1323–1329. doi: 10.1161/01.atv.20.5.1323
25. Chi J.S., Li J.Z., Jia J.J., Zhang T., Liu X.M., Yi L. Long non-coding RNA ANRIL in gene regulation and its duality in atherosclerosis. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2017; 37: 816–822. doi: 10.1007/s11596-017-1812-y
26. Chen G., Fu X., Wang G., Liu G., Bai X. Genetic variant rs10757278 on chromosome 9p21 contributes to myocardial infarction susceptibility. Int. J. Mol. Sci., 2015; 16 (5): 11678–11688. doi: 10.3390/ijms160511678.
27. Orlov P.S., Lozhkina N.G., Maksimov V.N., Kuimov A.D., Malyutina S.K., Voevoda M.I. Contact ROS1, TAS2R50, ZNF627, MIAF3 genes and 16q23.1, 6p24, 9p21 chromosomal regions with myocardial infarction in Caucasians of Novosibirsk in two age groups. Ateroscleroz., 2017; 13 (2): 5–11. (In Russ.)
28. Goncharova I.A., Makeeva O.A., Golubenko M.V., Tarasenko M.V., Sleptsov A.A., Puzyrev V.P. Genes for fibrogenesis in the determination of susceptibility to myocardial infarction. Mol. Biol. (Mosk)., 2016; 50(1): 94–105. (In Russ.). doi: 10.7868/S0026898415060099
29. Shesternya P.A., Shulman V.A., Nikulina S.Yu., Martynova E.A., Demkina A.I., Orlov P.S., Maksimov V.N., Voevoda M.I. Predictive role of chromosome 9P21.3 polymorphisms and their association with family history of coronary heart disease in patients with myocardial infarction. Russian Journal of Cardiology, 2012; 6:14–18. (In Russ.)
30. Lozhkina N.G., Maksimov V.N., Kulikov I.V., Orlov P.S., Kuimov A.D., Voevoda M.I. Association of genetic markers with lowered retractive heart function at patients with acute coronary syndrome. Journal of Siberian Medical Sciences, 2013; 3: 38. (In Russ.)
31. Schunkert H., Götz A., Braund P., McGinnis R., Tregouet D.A., Mangino M., Linsel-Nitschke P., Cambien F., Hengstenberg C., Stark K., Blankenberg S., Tiret L., Ducimetiere P., Keniry A., Ghori M.J., Schreiber S., El Mokhtari N.E., Hall A.S., Dixon R.J., Goodall A.H., Liptau H., Pollard H., Schwarz D.F., Hothorn L.A., Wichmann H.E., König I.R., Fischer M., Meisinger C., Ouwehand W., Deloukas P., Thompson J.R., Erdmann J., Ziegler A., Samani N.J.; Cardiogenics Consortium. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation, 2008; 117 (13): 1675–1684. doi: 10.1161/CIRCULATIONAHA.107.730614
32. O’Donnell C.J., Kavousi M., Smith A.V., Kardia S.L., Feitosa M.F., Hwang S.J., Sun Y.V., Province M.A., Aspelund T., Dehghan A., Hoffmann U., Bielak L.F., Zhang Q., Eiriksdottir G., van Duijn C.M., Fox C.S., de Andrade M., Kraja A.T., Sigurdsson S., Elias-Smale S.E., Murabito J.M., Launer L.J., van der Lugt A., Kathiresan S.; CARDIoGRAM Consortium; Krestin G.P., Herrington D.M., Howard T.D., Liu Y., Post W., Mitchell B.D., O’Connell J.R., Shen H., Shuldiner A.R., Altshuler D., Elosua R., Salomaa V., Schwartz S.M., Siscovick D.S., Voight B.F., Bis J.C., Glazer N.L., Psaty B.M., Boerwinkle E., Heiss G., Blankenberg S., Zeller T., Wild P.S., Schnabel R.B, Schillert A., Ziegler A., Mьnzel T.F., White C.C., Rotter J.I., Nalls M., Oudkerk M., Johnson A.D., Newman A.B., Uitterlinden A.G., Massaro J.M., Cunningham J., Harris T.B., Hofman A., Peyser P.A., Borecki I.B., Cupples L.A., Gudnason V., Witteman J.C. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation, 2011; 124(25): 2855–2864. doi: 10.1161/CIRCULATIONAHA.110.974899
33. Wang Q., Zhou S.B., Wang L.J., Lei M.M., Wang Y., Miao C., Jin Y.Z. Seven functional polymorphisms in the CETP gene and myocardial infarction risk: a meta-analysis and meta-regression. PLoS One, 2014; 9(2): e88118. doi: 10.1371/journal.pone.0088118
34. Cao M., Zhou Z.W., Fang B.J., Zhao C.G., Zhou D. Meta-analysis of cholesteryl ester transfer protein TaqIB polymorphism and risk of myocardial infarction. Medicine (Baltimore), 2014; 93 (26): e160. doi: 10.1097/MD.0000000000000160
35. Shao A., Shi J., Liang Z., Pan L., Zhu W., Liu S., Xu J., Guo Y., Cheng Y., Qiao Y. Meta-analysis of the association between Apolipoprotein E polymorphism and risks of myocardial infarction. BMC Cardiovasc. Disord., 2022; 22(1): 126. doi: 10.1186/s12872-022-02566-0
36. Xu H., Li H., Liu J., Zhu D., Wang Z., Chen A., Zhao Q. Meta-analysis of apolipoprotein E gene polymorphism and susceptibility of myocardial infarction. PLoS One, 2014; 9(8): e104608. doi: 10.1371/journal.pone.0104608
37. Peasey A., Bobak M., Kubinova R., Malyutina S., Pajak A., Tamosiunas A., Pikhart H., Nicholson A., Marmot M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: rationale and design of the HAPIEE study. BMC Public Health, 2006; 6: 255. doi: 10.1186/1471-2458-6-255
38. Sambrook J., Russel D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc., 2006; 1: pdb.prot4455. doi: 10.1101/pdb.prot4455
39. Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Jonasdottir A., Sigurdsson A., Baker A., Palsson A., Masson G., Gudbjartsson D.F., Magnusson K.P., Andersen K., Levey A.I., Backman V.M., Matthiasdottir S., Jonsdottir T., Palsson S., Einarsdottir H., Gunnarsdottir S., Gylfason A., Vaccarino V., Hooper W.C., Reilly M.P., Granger C.B., Austin H., Rader D.J., Shah S.H., Quyyumi A.A., Gulcher J.R., Thorgeirsson G., Thorsteinsdottir U., Kong A., Stefansson K. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 2007; 316: 1491–1493. doi: 10.1126/science.1142842
40. McPherson R., Pertsemlidis A., Kavaslar N., Stewart A., Roberts R., Cox D.R., Hinds D.A., Pennacchio L.A., Tybjaerg-Hansen A., Folsom A.R., Boerwinkle E., Hobbs H.H., Cohen J.C. A common allele on chromosome 9 associated with coronary heart disease. Science, 2007; 316: 1488–1491. doi: 10.1126/science.1142447
41. Guo Y., Garcia-Barrio M. Experimental biology for the identification of causal pathways in atherosclerosis. Cardiovasc. Drugs Ther., 2016; 30: 1–11. doi: 10.1007/s10557-016-6644-7
42. Maksimov V.N., Orlov P.S., Ivanova А.A., Lozhkina N.G., Kuimov А.D., Savchenko S.V., Novoselov V.P., Voevoda М.I., Malyutina S.К. Complex evaluation of the significance of populational genetic markers associated with myocardial infarction and risk factors. Russian Journal of Cardiology, 2017; 10: 33–41. (In Russ.). doi: 10.15829/1560-4071-2017-10-33-41
43. Osmak G., Titov B., Matveeva N.A., Bashinskaya V.V., Shakhnovich R.M., Sukhinina T.S., Kukava N.G., Ruda M.Y., Favorova O.O. Impact of 9p21.3 region and atherosclerosis-related genes’ variants on longterm recurrent hard cardiac events after a myocardial infarction. Gene, 2018; 647: 283–288. doi: 10.1016/j.gene.2018.01.036
44. Bressler J., Folsom A.R., Couper D.J., Volcik K.A., Boerwinkle E. Genetic variants identified in a european genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study. Am. J. Epidemiol., 2010; 171: 14–23. doi: 10.1093/aje/kwp377
45. Jansen M.D., Knudsen G.P., Myhre R., Høiseth G., Mørland J., Næss Ø., Tambs K., Magnus P. Genetic variants in loci 1p13 and 9p21 and fatal coronary heart disease in a Norwegian case-cohort study. Mol. Biol Rep., 2014; 41: 2733–2743. doi: 10.1007/s11033-014-3096-7
46. Pignataro P., Pezone L., di Gioia G., Franco D., Iaccarino G., Iolascon A., Ciccarelli M., Capasso M. Association study between coronary artery disease and rs1333049 polymorphism at 9p21.3 locus in Italian population. J Cardiovasc Transl Res., 2017; 10 (5-6): 455–458. doi: 10.1007/s12265-017-9758-9
47. Koopal C., Geerlings M.I., Muller M., de Borst G.J., Algra A., van der Graaf Y., Visseren F.L.J., SMART Study Group. The relation between apolipoprotein E (APOE) genotype and peripheral artery disease in patients at high risk for cardiovascular disease. Atherosclerosis, 2016; 246: 187–192. doi: 10.1016/j.atherosclerosis.2016.01.009
48. Corsetti J.P., Gansevoort R.T., Bakker S.J.L., Dullaart R.P.F. Apolipoprotein E levels and apolipoprotein E genotypes in incident cardiovascular disease risk in subjects of the Prevention of Renal and Vascular Endstage disease study. J. Clin. Lipidol., 2016; 10 (4): 842–850. doi: 10.1016/j.jacl.2016.03.003
49. Wang L., Shao C., Han C., Li P., Wang F., Wang Y., Li J. Correlation of ApoE gene polymorphism with acute myocardial infarction and aspirin resistance after percutaneous coronary intervention. Am. J. Transl. Res., 2022; 14(5): 3303–3310.
50. Duncan L., Shen H., Gelaye B., Meijsen J., Ressler K., Feldman M., Peterson R., Domingue B. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun., 2019; 10: 3328. doi: 10.1038/s41467-019-11112-0
51. Reisberg S., Iljasenko T., Läll K., Fischer K., Vilo J. Comparing distributions of polygenic risk scores of type 2 diabetes and coronary heart disease within different populations. PLoS One, 2017; 12: e0179238. doi: 10.1371/journal.pone.0179238
52. Cross B., Turner R., Pirmohamed M. Polygenic risk scores: An overview from bench to bedside for personalised medicine. Front. Genet., 2022; 13: 1000667. doi: 10.3389/fgene.2022.1000667
53. Ershova A.I., Meshkov A.N., Kutsenko V.A., Vyatkin Yu.V., Kiseleva A.V., Sotnikova E.A., Limonova A.S., Garbuzova E.V., Muromtseva G.A., Zaicenoka M., Zharikova A.A., Ramensky V.E., Belova O.А., Rachkova S.A., Pokrovskaya M.S., Shalnova S.A., Boytsov S.A., Drapkina O.M. Validation of genetic risk scores for coronary artery disease, developed on European population samples, in Russian population. Cardiovascular Therapy and Prevention, 2023; 22 (12): 3856. (In Russ.). doi: 10.15829/1728-8800-2023-3856
Review
For citations:
Semaev S.E., Shcherbakova L.V., Orlov P.S., Ivanoshchuk D.E., Malyutina S.K., Gafarov V.V., Voevoda M.I., Ragino Yu.I., Shakhtshneider E.V. Association of variants of the APOE, CETP genes and the 9P21.3 chromosomal region with coronary heart disease, myocardial infarction and acute heart failure. Ateroscleroz. 2024;20(2):121-135. (In Russ.) https://doi.org/10.52727/2078-256X-2024-20-2-121-135