Preview

Ateroscleroz

Advanced search

Polymorphisms of the ATP-binding cassette sterol efflux transporter genes g5 and g8 in cardiovascular diseases and type 2 diabetes mellitus

https://doi.org/10.52727/2078-256X-2024-20-1-6-15

Abstract

Mutations with a decrease in the expression and function of the of the ATP-binding cassette genes proteins ABCG5 and ABCG8, as the main sterol efflux transporters, lead to the accumulation of xenosterols in plasma associated with changes in the lipid profile, hyperglycemia and the risk of cardiovascular diseases (CVD) and type 2 diabetes mellitus (DM2). The review presents studies of the role of ABCG5/G8 polymorphisms in CVD and DM2. In several studies, including large–scale ones, the influence of ABCG5/G8 variants (rs4245791, rs41360247 rs4299376, rs11887534, rs7598542, rs78451356, etc.) on the risk of coronary heart disease (CHD) was proved, in others – when confirming the association of the risk of CHD with ABCG5 polymorphism, this status for ABCG8 was denied. Since sterol metabolism disorders observed in individuals with DM2 are probably associated with low insulin sensitivity, many authors confirmed the association of variants rs4299376, rs4148211, rs140231607 and rs6720173 of the ABCG5/G8 with the risk of DM2, but some authors did not find such a connection with DM2 for variants rs4299376, rs11887534 and rs4148217 of the ABCG8. A decrease in ABCG5/G8 mRNA expression was observed in DM2 in experimental animals and in humans; on the contrary, overexpression of ABCG5/G8 in db/db mice restored the sensitivity of the liver to insulin, which led to a decrease in fasting glucose, lipids and improved glucose tolerance. The inconsistency of data on the association of ABCG5/G8 gene polymorphism with the risk of CVD and DM2 may probably be due to inter-population differences, which necessitates further study of the contribution of ABCG5/G8 variants to the risk of these diseases.

About the Authors

I. N. Grigor’eva
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Irina N. Grigor’eva, doctor of medical sciences, professor, chief researcher

175/1, Boris Bogatkov str., Novosibirsk, 630089

Scopus Author ID: 7004630757,

Web of Science Researcher ID JGE-0324-2023

AuthorID: 96089



T. E. Notova
Novosibirsk State Regional Clinical Hospital
Russian Federation

Tatiana E. Notova, therapist, gastroenterologist

130, Nemirovich-Danchenko str., Novosibirsk, 630087



T. S. Suvorova
Novosibirsk State Medical University of Ministry of Health of Russian Federation
Russian Federation

Tatyana S. Suvorova, candidate of medical sciences, associate professor of the department of internal medicine

52, Krasny Prospekt, Novosibirsk, 630091



D. L. Nepomnyashchikh
Novosibirsk State Medical University of Ministry of Health of Russian Federation
Russian Federation

David L. Nepomnyashchikh, doctor of medical sciences, professor of the chair for internal medicine of department of general medicine

52, Krasny Prospekt, Novosibirsk, 630091



References

1. Plummer A.M., Culbertson A.T., Liao M. The ABCs of sterol transport. Annu. Rev. Physiol., 2021; 83: 153– 181. doi: 10.1146/annurev-physiol-031620-094944

2. Schumacher T., Benndorf R.A. ABC transport proteins in cardiovascular disease – A brief summary. Molecules, 2017; 22 (4): 589. doi: 10.3390/molecules22040589

3. Wang H.H., Liu M., Portincasa P., Wang D.Q. Recent advances in the critical role of the sterol efflux transporters ABCG5/G8 in health and disease. Adv. Exp. Med. Biol., 2020; 1276: 105–136. doi: 10.1007/978-981-15-6082-8_8

4. Teng M.S., Yeh K.H., Hsu L.A., Chou H.H., Er L.K., Wu S., Ko Y.L. Differential effects of ABCG5/G8 gene region variants on lipid profile, blood pressure status, and gallstone disease history in Taiwan. Genes (Basel), 2023; 14 (3): 754. doi: 10.3390/genes14030754

5. Fong V., Patel S.B. Recent advances in ABCG5 and ABCG8 variants. Curr. Opin. Lipidol., 2021; 32 (2): 117–122. doi: 10.1097/MOL.0000000000000734

6. Brown J.M., Yu L. Protein mediators of sterol transport across intestinal brush border membrane. Subcell. Biochem., 2010; 51: 337–380. doi: 10.1007/978-90-481-8622-8_12

7. Zein A.A., Kaur R., Hussein T.O.K., Graf G.A., Lee J.Y. ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem. Soc. Trans., 2019; 47 (5): 1259–1268. doi: 10.1042/BST20190130

8. Patel S.B., Graf G.A., Temel R.E. ABCG5 and ABCG8: more than a defense against xenosterols. J. Lipid Res., 2018; 59 (7): 1103–1113. doi: 10.1194/jlr.R084244

9. Bustos B.I., Pérez-Palma E., Buch S., Azocar L., Riveras E., Ugarte G.D., Toliat M., Nürnberg P., Lieb W., Franke A., Hinz S., Burmeister G., von Schönfels W., Schafmayer C., Völzke H., Völker U., Homuth G., Lerch M.M., Santos J.L., Puschel K., Bambs C., Roa J.C., Gutiérrez R.A., Hampe J., de Ferrari G.V., Miquel J.F. Variants in ABCG8 and TRAF3 genes confer risk for gallstone disease in admixed Latinos with Mapuche Native American ancestry. Sci. Rep., 2019; 9 (1): 772. doi: 10.1038/s41598-018-35852-z

10. Chen Y., Weng Z., Liu Q., Shao W., Guo W., Chen C., Jiao L., Wang Q., Lu Q., Sun H., Gu A., Hu H., Jiang Z. FMO3 and its metabolite TMAO contribute to the formation of gallstones. Biochim. Biophys. Acta. Mol. Basis Dis., 2019; 1865 (10): 2576– 2585. doi: 10.1016/j.bbadis.2019.06.016

11. Grigorieva I.N. Atherosclerosis and trimethylamine-N-oxide — the gut microbiota potential. Russ. J. Cardiol., 2022; 27 (9): 5038. (In Russ.). doi: 10.15829/1560-4071-2022-5038

12. Helgadottir A., Thorleifsson G., Alexandersson K.F., Tragante V., Thorsteinsdottir M., Eiriksson F.F., Gretarsdottir S., Björnsson E., Magnusson O., Sveinbjornsson G., Jonsdottir I., Steinthorsdottir V., Ferkingstad E., Jensson B.Ö., Stefansson H., Olafsson I., Christensen A.H., Torp-Pedersen C., Køber L., Pedersen O.B., Erikstrup C., Sørensen E., Brunak S., Banasik K., Hansen T.F., Nyegaard M., Eyjolfssson G.I. Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease. Eur. Heart J., 2020; 41 (28): 2618–2628. doi: 10.1093/eurheartj/ehaa531

13. Grigorieva I.N., Ragino Yu.I., Romanova T.I., Malyutina S.K. Association between coronary heart disease and gallstone disease (epidemiological study). Ateroscleroz, 2019; 15 (2): 32–38. (In Russ.). doi: 10.15372/ATER20190205

14. Berge K.E., Tian H., Graf G.A., Yu L., Grishin N.V., Schultz J., Kwiterovich P., Shan B., Barnes R., Hobbs H.H. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science, 2000; 290 (5497): 1771–1775. doi: 10.1126/science.290.5497.1771

15. Bastida J.M., Benito R., González-Porras J.R., Rivera J. ABCG5 and ABCG8 gene variations associated with sitosterolemia and platelet dysfunction. Platelets, 2021; 32 (4): 573–577. doi: 10.1080/09537104.2020.1779926

16. Kawamura R., Saiki H., Tada H., Hata A. Acute myocardial infarction in a 25-year-old woman with sitosterolemia. J. Clin. Lipidol., 2018; 12 (1): 246–249. doi: 10.1016/j.jacl.2017.10.017

17. Zhang H., Mo X.B., Xu T., Lei S.F., Zhang Y.H. Detecting novel genes for low-density lipoprotein cholesterol in European population using bioinformatics analysis. Per. Med., 2016; 13 (3): 225–231. doi: 10.2217/pme.16.1

18. Srivastava A., Garg N., Srivastava A., Srivastava K., Mittal B. Effect of genetic variant (rs11887534) in ABCG8 gene in coronary artery disease and response to atorvastatin therapy. Dis. Markers, 2010; 28 (5): 307–313. doi: 10.3233/DMA-2010-0710

19. IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet., 2011; 7 (9): e1002260. doi: 10.1371/journal.pgen.1002260

20. Stender S., Frikke-Schmidt R., Nordestgaard B.G., Tybjærg-Hansen A. The ABCG5/8 cholesterol transporter and myocardial infarction versus gallstone disease. J. Am. Coll. Cardiol., 2014; 63 (20): 2121–2128. doi: 10.1016/j.jacc.2013.12.055

21. Scholz M., Horn K., Pott J., Gross A., Kleber M.E., Delgado G.E., Mishra P.P., Kirsten H., Gieger C., Müller-Nurasyid M., Tönjes A., Kovacs P., Lehtimäki T., Raitakari O., Kähönen M., Gylling H., Baber R., Isermann B., Stumvoll M., Loeffler M., März W., Meitinger T., Peters A., Thiery J., Teupser D., Ceglarek U. Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat. Commun., 2022; 13 (1): 143. doi: 10.1038/s41467-021-27706-6

22. Teupser D., Baber R., Ceglarek U., Scholz M., Illig T., Gieger C., Holdt L.M., Leichtle A., Greiser K.H., Huster D., Linsel-Nitschke P., Schäfer A., Braund P.S., Tiret L., Stark K., Raaz-Schrauder D., Fiedler G.M., Wilfert W., Beutner F., Gielen S., Grosshennig A., König I.R., Lichtner P., Heid I.M., Kluttig A., El Mokhtari N.E., Rubin D., Ekici A.B., Reis A., Garlichs C.D., Hall A.S., Matthes G., Wittekind C. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ. Cardiovasc. Genet., 2010; 3 (4): 331–339. doi: 10.1161/CIRCGENETICS.109.907873

23. Chen Z.C., Shin S.J., Kuo K.K., Lin K.D., Yu M.L., Hsiao P.J. Significant association of ABCG8:D19H gene polymorphism with hypercholesterolemia and insulin resistance. J. Hum. Genet., 2008; 53 (8): 757– 763. doi: 10.1007/s10038-008-0310-2

24. Koeijvoets K.C., van der Net J.B., Dallinga-Thie G.M., Steyerberg E.W., Mensink R.P., Kastelein J.J., Sijbrands E.J., Plat J. ABCG8 gene polymorphisms, plasma cholesterol concentrations, and risk of cardiovascular disease in familial hypercholesterolemia. Atherosclerosis, 2009; 204 (2): 453–458. doi: 10.1016/j.atherosclerosis.2008.09.018

25. Nomura A., Emdin C.A., Won H.H., Peloso G.M., Natarajan P., Ardissino D., Danesh J., Schunkert H., Correa A., Bown M.J., Samani N.J., Erdmann J., McPherson R., Watkins H., Saleheen D., Elosua R., Kawashiri M.A., Tada H., Gupta N., Shah S.H., Rader D.J., Gabriel S., Khera A.V., Kathiresan S. Heterozygous ABCG5 gene deficiency and risk of coronary artery disease. Circ. Genom. Precis. Med., 2020; 13 (5): 417–423. doi: 10.1161/CIRCGEN.119.002871

26. Hubacek J.A., Berge K.E., Stefkova J., Pitha J., Skodova Z., Lanska V., Poledne R. Polymorphisms in ABCG5 and ABCG8 transporters and plasma cholesterol levels. Physiol. Res., 2004; 53: 395–401.

27. Jakulj L., Vissers M.N., Tanck M.W., Hutten B.A., Stellaard F., Kastelein J.J., Dallinga-Thie G.M. ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis. J. Lipid. Res., 2010; 51 (10): 3016–3023. doi: 10.1194/jlr.M008128

28. Gylling H., Hallikainen M., Rajaratnam R.A., Simonen P., Pihlajamäki J., Laakso M., Miettinen T.A. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease. Metabolism, 2009; 58 (3): 401–407. doi: 10.1016/j.metabol.2008.10.015

29. Szilvási A., Andrikovics H., Pongrácz E., Kalina A., Komlósi Z., Klein I., Tordai A. Frequencies of four ATP-binding cassette transporter G8 polymorphisms in patients with ischemic vascular diseases. Genet. Test Mol. Biomarkers, 2010; 14 (5): 667–672. doi: 10.1089/gtmb.2010.0035

30. Rudkowska I., Jones P.J. Polymorphisms in ABCG5/ G8 transporters linked to hypercholesterolemia and gallstone disease. Nutr. Rev., 2008; 66 (6): 343–348. doi: 10.1111/j.1753-4887.2008.00042.x

31. Li R., Liu Y., Shi J., Yu Y., Lu H., Yu L., Liu Y., Zhang F. Diosgenin regulates cholesterol metabolism in hypercholesterolemic rats by inhibiting NPC1L1 and enhancing ABCG5 and ABCG8. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids., 2019; 1864 (8): 1124–1133. doi: 10.1016/j.bbalip.2019.04.010

32. Yousri N.A., Suhre K., Yassin E., Al-Shakaki A., Robay A., Elshafei M., Chidiac O., Hunt S.C., Crystal R.G., Fakhro K.A. Metabolic and metabo-clinical signatures of type 2 diabetes, obesity, retinopathy, and dyslipidemia. Diabetes, 2022; 71 (2): 184–205. doi: 10.2337/db21-0490

33. Gok O., Karaali Z.E., Acar L., Kilic U., Ergen A. ABCG5 and ABCG8 gene polymorphisms in type 2 diabetes mellitus in the Turkish population. Can. J. Diabetes, 2015; 39 (5): 405–410. doi: 10.1016/j.jcjd.2015.04.004

34. Gylling H., Hallikainen M., Pihlajamäki J., Agren J., Laakso M., Rajaratnam R.A., Rauramaa R., Miettinen T.A. Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J. Lipid. Res., 2004; 45 (9): 1660–1665. doi: 10.1194/jlr.M300522-JLR200

35. Lee S., Kim S.A., Hong J., Kim Y., Hong G., Baik S., Choi K., Lee M.K., Lee K.R. Identification of genetic variants related to metabolic syndrome by next-generation sequencing. Diabetol. Metab. Syndr., 2022; 14 (1): 119. doi: 10.1186/s13098-022-00893-y

36. Cederberg H., Gylling H., Miettinen T.A., Paananen J., Vangipurapu J., Pihlajamäki J., Kuulasmaa T., Stančáková A., Smith U., Kuusisto J., Laakso M. Non-cholesterol sterol levels predict hyperglycemia and conversion to type 2 diabetes in Finnish men. PLoS One, 2013; 8 (6): e67406. doi: 10.1371/journal.pone.0067406

37. de Mello V.D., Lindström J., Eriksson J.G., IlanneParikka P., Keinänen-Kiukaanniemi S., Pihlajamäki J., Tuomilehto J., Uusitupa M. Markers of cholesterol metabolism as biomarkers in predicting diabetes in the Finnish Diabetes Prevention Study. Nutr. Metab. Cardiovasc. Dis., 2015; 25 (7): 635–642. doi: 10.1016/j.numecd.2015.03.012

38. Lotta L.A., Sharp S.J., Burgess S., Perry J.R.B., Stewart I.D., Willems S.M., Luan J., Ardanaz E., Arriola L., Balkau B., Boeing H., Deloukas P., Forouhi N.G., Franks P.W., Grioni S., Kaaks R., Key T.J., Navarro C., Nilsson P.M., Overvad K., Palli D., Panico S., Quirós J.R., Riboli E., Rolandsson O., Sacerdote C., Salamanca E.C., Slimani N., Spijkerman A.M., Tjonneland A., Tumino R., van der A D.L., van der Schouw Y.T., McCarthy M.I., Barroso I., O’Rahilly S., Savage D.B., Sattar N., Langenberg C., Scott R.A., Wareham N.J. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA, 2016; 316 (13): 1383–1391. doi: 10.1001/jama.2016.14568

39. Abed E., Jarrar Y., Alhawari H., Abdullah S., Zihlif M. The association of cytochrome 7A1 and ATPbinding cassette G8 genotypes with type 2 diabetes among Jordanian patients. Drug Metab. Pers. Ther., 2021; 37 (2): 149–154. doi: 10.1515/dmpt-2021-0164

40. Lally S., Tan C.Y., Owens D., Tomkin G.H. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia, 2006; 49 (5): 1008–1016. doi: 10.1007/s00125-006-0177-8

41. Sabeva N.S., Rouse E.J., Graf G.A. Defects in the leptin axis reduce abundance of the ABCG5-ABCG8 sterol transporter in liver. J. Biol. Chem., 2007; 282 (31): 22397–22405. doi: 10.1074/jbc.M702236200

42. Scoggan K.A., Gruber H., Chen Q., Plouffe L.J., Lefebvre J.M., Wang B., Bertinato J., L’Abbé M.R., Hayward S., Ratnayake W.M. Increased incorporation of dietary plant sterols and cholesterol correlates with decreased expression of hepatic and intestinal Abcg5 and Abcg8 in diabetic BB rats. J. Nutr. Biochem., 2009; 20 (3): 177–186. doi: 10.1016/j.jnutbio.2008.01.011

43. Biddinger S.B., Haas J.T., Yu B.B., Bezy O., Jing E., Zhang W., Unterman T.G., Carey M.C., Kahn C.R. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat. Med., 2008; 14 (7): 778–782. doi: 10.1038/nm1785

44. Su K., Sabeva N.S., Liu J., Wang Y., Bhatnagar S., van der Westhuyzen D.R., Graf G.A. The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation. J. Biol. Chem., 2012; 287 (34): 28564–28575. doi: 10.1074/jbc.M112.360081

45. Su K., Sabeva N.S., Wang Y., Liu X., Lester J.D., Liu J., Liang S., Graf G.A. Acceleration of biliary cholesterol secretion restores glycemic control and alleviates hypertriglyceridemia in obese db/db mice. Arterioscler. Thromb. Vasc. Biol., 2014; 34 (1): 26–33. doi: 10.1161/ATVBAHA.113.302355

46. Sutherland W.H., Scott R.S., Lintott C.J., Robertson M.C., Stapely S.A., Cox C. Plasma non-cholesterol sterols in patients with non-insulin dependent diabetes mellitus. Horm. Metab. Res., 1992; 24 (4): 172–175. doi: 10.1055/s-2007-1003287

47. Li Q., Yin R.X., Wei X.L., Yan T.T., Aung L.H., Wu D.F., Wu J.Z., Lin W.X., Liu C.W., Pan S.L. ATP-binding cassette transporter G5 and G8 polymorphisms and several environmental factors with serum lipid levels. PLoS One, 2012; 7 (5): e37972. doi: 10.1371/journal.pone.0037972

48. Lu K., Lee M.-H., Hazard S. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am. J. Hum. Genet., 2001; 69: 278–290. doi: 10.1086/321294


Review

For citations:


Grigor’eva I.N., Notova T.E., Suvorova T.S., Nepomnyashchikh D.L. Polymorphisms of the ATP-binding cassette sterol efflux transporter genes g5 and g8 in cardiovascular diseases and type 2 diabetes mellitus. Ateroscleroz. 2024;20(1):6-15. (In Russ.) https://doi.org/10.52727/2078-256X-2024-20-1-6-15

Views: 408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)