Preview

Ateroscleroz

Advanced search

Atherogenic features of the fatty acid profile of erythrocyte membranes of patients with fatty liver disease of mixed genesis

https://doi.org/10.52727/2078-256X-2023-19-4-350-368

Abstract

Aim of the study was to investigate the features of the fatty acid (FA) profile of erythrocyte membranes of patients with fatty liver disease (FLD) of mixed genesis (metabolic + alcoholic) from the point of view of atherogenic changes.

Material and methods. 31 men (50.6 ± 9.9 years old) with FLD of mixed genesis, the degree of liver fibrosis corresponded to 0-1 (FibroScan ® 502 Echosens, France), and 28 persons of the comparison group, comparable in age, were examined. The study of the composition of FAs of erythrocyte membranes was carried out using gas chromatography/mass spectrometry – a system based on three quadrupoles Agilent 7000B (USA).

Results. Patients with FLD of mixed genesis had higher level of palmitoleic (p = 0.03), pentadecanoic (p = 0.05), omega-6 to omega-3 polyunsaturated fatter acids (PUFA) ratio (p = 0.03) and, conversely, lower level of docosahexaenoic (p = 0.0002), total content of eicosapentaenoic and docosahexaenoic FA (p = 0.0007), of all omega-3 PUFA (p = 0.001) in the membranes of erythrocytes compared to healthy persons. There are trends towards a decrease in the content of omega-3 eicosapentaenoic acid and an increase in the ratio of SFA/PUFA in patients with fibroids of mixed genesis in contrast to healthy individuals. The level of individual FA provided high diagnostic accuracy in differentiating patients with FLD of mixed genesis from healthy individuals: palmitoleic (9-C16:1) (area under ROC (AUC) 0.702, sensitivity 66.7 %, specificity 69.6 %), docosahexaenoic (C22:6n-3) (AUC 0.795, sensitivity 77.3 %, specificity 78.3 %), as well as the total content of eicosapentaenoic and docosegexaenoic FA (C20:5n-3 + C22:6n-3) (AUC 0.777, sensitivity 70.1 %, specificity 82.6 %).

Conclusions. The revealed features of the profile of erythrocyte membrane FA in FLD of mixed genesis – increase of saturated, monounsaturated, omega-6 PUFA content and reduce of omega-3 PUFA concentration are atherogenic. The continuation of research in terms of the use of FAs as biomarkers of this pathology and targets for therapeutic effects should be considered promising.

About the Authors

M. V. Kruchinina
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education «Novosibirsk State Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Margarita V. Kruchinina, doctor of medical sciences, associate professor, head of the gastroenterology laboratory, leading researcher of the gastroenterology laboratory of the Research Institute of Internal and Preventive Medicine – Branch of ICIG SB RAS, professor of the department of propaedeutics of internal diseases of the NSMU.

175/1, Boris Bogatkov str., Novosibirsk, 630089; 52, Krasny Prospekt, Novosibirsk, 630091



A. V. Belkovets
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education «Novosibirsk State Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Anna V. Belkovets - doctor of medical sciences, associate professor, senior researcher at the laboratory of gastroenterology, head of the clinic of the Research Institute of Internal and Preventive Medicine – Branch of ICIG SB RAS, professor of the department of propaedeutics of internal diseases of the NSMU.

175/1, Boris Bogatkov str., Novosibirsk, 630089; 52, Krasny Prospekt, Novosibirsk, 630091



M. V. Parulikova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Marina V. Parulikova - senior lecturer of the department of education.

175/1, Boris Bogatkov str., Novosibirsk, 630089



A. A. Gromov
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Andrey A. Gromov - candidate of medical sciences, senior researcher at the laboratory of clinical biochemical and hormonal studies of therapeutic diseases, head of the thrombosis prevention center.

175/1, Boris Bogatkov str., Novosibirsk, 630089



References

1. Pimpin L., Cortez-Pinto H., Negro F., Corbould E., Lazarus J.V., Webber L., Sheron N.; EASL HEPAHEALTH Steering Committee. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol., 2018; 69 (3): 718–735. doi: 10.1016/j.jhep.2018.05.011

2. Sarin S.K., Kumar M., Eslam M., George J., Al Mahtab M., Akbar S.M.F., Jia J., Tian Q., Aggarwal R., Muljono D.H., Omata M., Ooka Y., Han K.H., Lee H.W., Jafri W., Butt A.S., Chong C.H., Lim S.G., Pwu R.F., Chen D.S. Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission. The Lancet. Gastroenterology & hepatology, 2020; 5 (2): 167–228. https://doi.org/10.1016/S2468-1253(19)30342-5

3. Estes C., Razavi H., Loomba R., Younossi Z., Sanyal A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology (Baltimore, Md.), 2018; 67 (1): 123–133. https://doi.org/10.1002/hep.29466

4. Huang D.Q., Mathurin P., Cortez-Pinto H., Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nature Rev. Gastroenterology & Hepatology, 2023; 20 (1): 37–49. https://doi.org/10.1038/s41575-02200688-6

5. Rehm J., Samokhvalov A.V., Shield K.D. Global burden of alcoholic liver diseases. J. Hepatol., 2013; 59 (1): 160–168. doi: 10.1016/j.jhep.2013.03.007

6. Balmer M.L., Dufour J.F. Nicht-alkoholische Steatohepatitis – von NAFLD zu MAFLD [Non-alcoholic steatohepatitis – from NAFLD to MAFLD]. Ther. Umsch., 2011; 68 (4): 183–188. German. doi: 10.1024/0040-5930/a000148

7. Toh J.Z.K., Pan X.H., Tay P.W.L., Ng C.H., Yong J.N., Xiao J., Koh J.H., Tan E.Y., Tan E.X.X., Dan Y.Y., Loh P.H., Foo R., Chew N.W.S., Sanyal A.J., Muthiah M.D., Siddiqui M.S. A MetaAnalysis on the Global Prevalence, Risk factors and Screening of Coronary Heart Disease in Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol., 2022; 20 (11): 2462–2473. e10. doi: 10.1016/j.cgh.2021.09.021.

8. Sung K.C., Ryu S., Lee J.Y., Lee S.H., Cheong E.S., Wild S.H., Byrne C.D. Fatty Liver, Insulin Resistance, and Obesity: Relationships With Increase in Coronary Artery Calcium Over Time. Clin. Cardiol., 2016; 39 (6): 321–328. https://doi.org/10.1002/clc.22529

9. Jacobs K., Brouha S., Bettencourt R., Barrett-Connor E., Sirlin C., Loomba R. Association of Nonalcoholic Fatty Liver Disease With Visceral Adiposity but Not Coronary Artery Calcification in the Elderly. Clinical Gastroenterology and Hepatology : the Official Clinical Practice Journal of the American Gastroenterological Association. 2016; 14 (9): 1337–1344.e3. https://doi.org/10.1016/j.cgh.2016.01.010

10. Fracanzani A.L., Tiraboschi S., Pisano G., Consonni D., Baragetti A., Bertelli C., Norata D., Valenti L., Grigore L., Porzio M., Catapano A., Fargion S. Progression of carotid vascular damage and cardiovascular events in non-alcoholic fatty liver disease patients compared to the general population during 10 years of follow-up. Atherosclerosis, 2016; 246: 208–213. https://doi.org/10.1016/j.atherosclerosis.2016.01.016

11. Xu X., Lu L., Dong Q., Li X., Zhang N., Xin Y., Xuan S. Research advances in the relationship between nonalcoholic fatty liver disease and atherosclerosis. Lipids in Health and Disease, 2015; 14: 158. https://doi.org/10.1186/s12944-015-0141-z

12. Vilar C.P., Cotrim H.P., Florentino G.S., Barreto C.P., Florentino A.V., Bragagnoli G., Schwingel P.A. Association between nonalcoholic fatty liver disease and coronary artery disease. Revista da Associacao Medica Brasileira (1992), 2013; 59 (3): 290–297. https://doi.org/10.1016/j.ramb.2012.11.006

13. Yu J., Marsh S., Hu J., Feng W., Wu C. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol. Res. Pract, 2016; 2016: 2862173. doi: 10.1155/2016/2862173

14. Pafili K., Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab., 2021; 50: 101122. doi: 10.1016/j.molmet.2020.101122

15. Atherosclerosis and dyslipidemia. Diagnosis and correction of lipid metabolism disorders for the prevention and treatment of atherosclerosis. Russian recommendations, VII revision. 2020; 1 (38): 7–42. doi: 10.34687/22198202.JAD.2020.01.0002 (In Russ.)

16. Kotlyarov S., Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int. J. Mol. Sci., 2022; 23 (3): 1308. doi: 10.3390/ijms23031308

17. Ravnskov U. The questionable role of saturated and polyunsaturated fatty acids in cardiovascular disease. J. Clin. Epidemiol., 1998; 51 (6): 443–460. doi: 10.1016/s0895-4356(98)00018-3

18. Maki K.C., Dicklin M.R., Kirkpatrick C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol., 2021; 15 (6): 765–772. doi: 10.1016/j.jacl.2021.09.049

19. Yagi S., Fukuda D., Aihara K.I., Akaike M., Shimabukuro M., Sata M. n-3 Polyunsaturated Fatty Acids: Promising Nutrients for Preventing Cardiovascular Disease. J. Atheroscler. Thromb., 2017; 24 (10): 999– 1010. doi: 10.5551/jat.RV17013

20. Podymova S.D. Liver diseases: A guide for doctors. 5th edition, reprint. and additional. M.: LLC “Medical Information Agency”, 2018. 984 p. (in Russ.).

21. Odriozola A., Santos-Laso A., Del Barrio M., Cabezas J., Iruzubieta P., Arias-Loste M.T., Rivas C., Duque J.C.R., Antón Á., Fábrega E., Crespo J. Fatty Liver Disease, Metabolism and Alcohol Interplay: A Comprehensive Review. Int. J. Mol. Sci., 2023; 24 (9): 7791. doi: 10.3390/ijms24097791

22. Recommendations of the VNOK experts on the diagnosis and treatment of metabolic syndrome (second revision). Cardiovascular. Therapy and Prevention, 2009: 6 (2) (In Russ.)

23. Khang A.R., Lee H.W., Yi D., Kang Y.H., Son S.M. The fatty liver index, a simple and useful predictor of metabolic syndrome: analysis of the Korea National Health and Nutrition Examination Survey 2010-2011. Diabetes Metab. Syndr. Obes., 2019; 12: 181–190. doi: 10.2147/DMSO.S189544

24. Ivashkin V.T., Mayevskaya M.V., Pavlov Ch.S., Tikhonov I.N., Shirokova E.N., Bueverov A.O., Drapkina O.M., Shulpekova Yu.O., Tsukanov V.V., Mammaev S.N., Mayev I.V., Palgova L.K. Clinical recommendations for the diagnosis and treatment of non-alcoholic fatty liver diseases of the Russian Society for the Study of the Liver and the Russian Gastroenterological Association. Russian Journal of Gastroenterology, Hepatology, Coloproctology, 2016; 26 (2): 24–42. https://doi.org/10.22416/1382-43762016-26-2-24-42 (in Russ.).

25. Arab L., Akbar J. Biomarkers and the measurement of fatty acids. Public. Health. Nutr., 2002; 5 (6A): 865–871. doi: 10.1079/phn2002391

26. Kruchinina M.V., Kruchinin V.N., Prudnikova Ya.I., Gromov A.A., Shashkov M.V., Sokolova A.S. Investigation of the level of fatty acids of erythrocyte membranes and blood serum in patients with colorectal cancer in Novosibirsk. Advances in Molecular Oncology, 2018; 5 (2): 50–61. doi: 10.17650/2313-805X-2018-5-2-50-61. (In Russ.).

27. Breiman L. Random Forests. Machine Learning., 2001; 45: 5–32. https://doi.org/10.1023/A:1010933404324.

28. Brunt E.M., Wong V.W., Nobili V., Day C.P., Sookoian S., Maher J.J., Bugianesi E., Sirlin C.B., Neuschwander-Tetri B.A., Rinella M.E. Nonalcoholic fatty liver disease. Nature reviews. Disease Primers, 2015; 1: 15080. https://doi.org/10.1038/nrdp.2015.80

29. Mitsuyoshi H., Yasui K., Harano Y., Endo M., Tsuji K., Minami M., Itoh Y., Okanoue T., Yoshikawa T. Analysis of hepatic genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver disease. Hepatol. Res.: the Official Journal of the Japan Society of Hepatology, 2009; 39 (4): 366–373. https://doi.org/10.1111/j.1872-034X.2008.00464.x

30. He J., Lee J.H., Febbraio M., Xie W. The emerging roles of fatty acid translocase/CD36 and the aryl hydrocarbon receptor in fatty liver disease. Experimental Biol. and Med. (Maywood, N.J.), 2011; 236 (10): 1116–1121. https://doi.org/10.1258/ebm.2011.011128

31. Koliaki C., Szendroedi J., Kaul K., Jelenik T., Nowotny P., Jankowiak F., Herder C., Carstensen M., Krausch M., Knoefel W.T., Schlensak M., Roden M. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metabolism, 2015; 21 (5): 739–746. https://doi.org/10.1016/j.cmet.2015.04.004

32. Johnson E.S., Lindblom K.R., Robeson A., Stevens R.D., Ilkayeva O.R., Newgard C.B., Kornbluth S.,Andersen J.L. Metabolomic profiling reveals a role for caspase-2 in lipoapoptosis. The J. Biol. Chem., 2013; 288 (20): 14463–14475. https://doi.org/10.1074/jbc.M112.437210

33. Stienstra R., Saudale F., Duval C., Keshtkar S., Groener J. E., van Rooijen N., Staels B., Kersten S., Müller M. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology (Baltimore, Md.), 2010; 51 (2): 511–522. https://doi.org/10.1002/hep.23337

34. Huby T., Gautier E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nature reviews. Immunology, 2022; 22 (7): 429–443. https://doi.org/10.1038/s41577-021-00639-3

35. Miura K., Yang L., van Rooijen N., Brenner D.A., Ohnishi H., Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology (Baltimore, Md.), 2013; 57 (2): 577–589. https://doi.org/10.1002/hep.26081

36. Snodgrass R.G., Huang S., Choi I.W., Rutledge J.C., Hwang D.H. Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. J. Immunol (Baltimore, Md.: 1950), 2013; 191 (8): 4337–4347. https://doi.org/10.4049/jimmunol.1300298

37. Kim S.Y., Jeong J.M., Kim S.J., Seo W., Kim M.H., Choi W.M., Yoo W., Lee J.H., Shim Y.R., Yi H.S., Lee Y.S., Eun H.S., Lee B.S., Chun K., Kang S.J., Kim S.C., Gao B., Kunos G., Kim H.M., Jeong W.I. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat. Communicat., 2017; 8 (1): 2247. https://doi.org/10.1038/s41467-017-02325-2

38. Puri P., Baillie R.A., Wiest M.M., Mirshahi F., Choudhury J., Cheung O., Sargeant C., Contos M.J., Sanyal A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology, 2007; 46 (4): 1081–1090. doi: 10.1002/hep.21763

39. Yamada K., Mizukoshi E., Sunagozaka H., Arai K., Yamashita T., Takeshita Y., Misu H., Takamura T., Kitamura S., Zen Y., Nakanuma Y., Honda M., Kaneko S. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int., 2015; 35 (2): 582–590. doi: 10.1111/liv.12685

40. Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K., Contos M.J., Sterling R.K., Fuchs M., Zhou H., Watkins S.M., Sanyal A.J. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology, 2009; 50 (6): 1827–1838. doi: 10.1002/hep.23229

41. Guo R., Chen L., Zhu J., Li J., Ding Q., Chang K., Han Q., Li S. Monounsaturated fatty acid-enriched olive oil exacerbates chronic alcohol-induced hepatic steatosis and liver injury in C57BL/6J mice. Food Funct., 2023; 14 (3): 1573–1583. doi: 10.1039/d2fo03323b.

42. Yoo W., Gjuka D., Stevenson H.L., Song X., Shen H., Yoo S.Y., Wang J., Fallon M., Ioannou G.N., Harrison S.A., Beretta L. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS One, 2017; 12 (12): e0189965. doi: 10.1371/journal.pone.0189965

43. Zhou Y., Orešič M., Leivonen M., Gopalacharyulu P., Hyysalo J., Arola J., Verrijken A., Francque S., van Gaal L., Hyötyläinen T., Yki-Järvinen H. Noninvasive Detection of Nonalcoholic Steatohepatitis Using Clinical Markers and Circulating Levels of Lipids and Metabolites. Clin. Gastroenterol. Hepatol., 2016; 14 (10): 1463–1472. e6. doi: 10.1016/j.cgh.2016.05.046

44. Wang M., Zhang X., Ma L.J., Feng R.B., Yan C., Su H., He C., Kang J.X., Liu B., Wan J.B. Omega-3 polyunsaturated fatty acids ameliorate ethanol-induced adipose hyperlipolysis: A mechanism for hepatoprotective effect against alcoholic liver disease. Biochim. Biophys. Acta Mol. Basis. Dis., 2017; 1863 (12): 3190– 3201. doi: 10.1016/j.bbadis.2017.08.026

45. Warner D.R., Liu H., Miller M.E., Ramsden C.E., Gao B., Feldstein A.E., Schuster S., McClain C.J., Kirpich I.A. Dietary Linoleic Acid and Its Oxidized Metabolites Exacerbate Liver Injury Caused by Ethanol via Induction of Hepatic Proinflammatory Response in Mice. Am. J. Pathol., 2017; 187 (10): 2232–2245. doi: 10.1016/j.ajpath.2017.06.008

46. Zhang W., Zhong W., Sun Q., Sun X., Zhou Z. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice. Sci. Rep., 2017; 7 (1): 8976. doi: 10.1038/s41598-017-02759-0

47. Chei C.L., Yamagishi K., Kitamura A., Kiyama M., Sankai T., Okada T., Imano H., Ohira T., Cui R., Umesawa M., Muraki I., Tanigawa T., Sato S., Iso H. CIRCS Investigators. Serum Fatty Acid and Risk of Coronary Artery Disease – Circulatory Risk in Communities Study (CIRCS). Circ. J., 2018; 82 (12): 3013–3020. doi: 10.1253/circj.CJ-18-0240

48. Ragino Y.I., Shramko V.S., Stakhneva E.M., Chernyak E.I., Morozov S.V., Shakhtshneider E.V., Polonskaya Y.V., Shcherbakova L.V., Chernyavskiy A.M. Changes in the blood fatty-acid profile associated with oxidative-antioxidant disturbances in coronary atherosclerosis. J. Med. Biochem., 2020; 39 (1): 46–53. doi: 10.2478/jomb-2019-0010

49. Kritchevsky D., Tepper S.A., Czarnecki S.K., Sundram K. Red palm oil in experimental atherosclerosis. Asia Pac. J. Clin. Nutr., 2002; 11 Suppl 7: S433-S437. doi: 10.1046/j.1440-6047.11.s.7.5.x

50. Shramko V.S., Polonskaya Y.V., Kashtanova E.V., Stakhneva E.M., Ragino Y.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules, 2020; 10 (8): 1127. doi: 10.3390/biom10081127

51. Ebbesson S.O., Voruganti V.S., Higgins P.B., Fabsitz R.R., Ebbesson L.O., Laston S., Harris W.S., Kennish J., Umans B.D., Wang H., Devereux R.B., Okin P.M., Weissman N.J., MacCluer J.W., Umans J.G., Howard B.V. Fatty acids linked to cardiovascular mortality are associated with risk factors. Int. J. Circumpolar. Health, 2015; 74: 28055. doi: 10.3402/ijch.v74.28055

52. Ding C., Wang L., Yao Y., Li C. Mechanism of the initial oxidation of monounsaturated fatty acids. Food Chem., 2022; 392: 133298. doi: 10.1016/j.foodchem.2022.133298

53. Schwingshackl L., Hoffmann G. Monounsaturated Fatty Acids and Risk of Cardiovascular Disease: Synopsis of the Evidence Available from Systematic Reviews and Meta-Analyses. Nutrients, 2012; 4 (12): 1989– 2007. https://doi.org/10.3390/nu4121989

54. Kotlyarov S., Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr., 2022; 9: 998291. doi: 10.3389/fnut.2022.998291

55. Bäck M. Omega-3 fatty acids in atherosclerosis and coronary artery disease. Future Sci. OA., 2017; 3 (4): FSO236. doi: 10.4155/fsoa-2017-0067

56. Krupa-Kotara K., Grajek M., Wypych-Ślusarska A., Martynus-Depta S., Oleksiuk K., Głogowska-Ligus J., Szczepańska E., Słowiński J. Properties of Polyunsaturated Fatty Acids in Primary and Secondary Prevention of Cardiovascular Diseases in the View of Patients (Silesia, Poland). Nursing Reports, 2022; 12 (4): 980–992. https://doi.org/10.3390/nursrep12040094

57. Simonetto M., Infante M., Sacco R.L., Rundek T., Della-Morte D. A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia. Nutrients, 2019; 11 (10): 2279. doi: 10.3390/nu11102279.

58. Zehr K.R., Walker M.K. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prostaglandins Other Lipid Mediat., 2018; 134: 131–140. doi: 10.1016/j.prostaglandins.2017.07.005

59. Chang C.L., Deckelbaum R.J. Omega-3 fatty acids: mechanisms underlying ‘protective effects’ in atherosclerosis. Curr. Opin. Lipidol., 2013; 24 (4): 345–350. doi: 10.1097/MOL.0b013e3283616364

60. Lee M.W., Park J.K., Hong J.W., Kim K.J., Shin D.Y., Ahn C.W., Song Y.D., Cho H.K., Park S.W., Lee E.J. Beneficial Effects of Omega-3 Fatty Acids on Low Density Lipoprotein Particle Size in Patients with Type 2 Diabetes Already under Statin Therapy. Diabetes Metab. J., 2013; 37 (3): 207–211. doi: 10.4093/dmj.2013.37.3.207

61. John Chapman M., Preston Mason R. Cholesterol crystals and atherosclerotic plaque instability: Therapeutic potential of eicosapentaenoic acid. Pharmacol. Ther., 2022; 240: 108237. doi: 10.1016/j.pharmthera.2022.108237

62. Gao Z., Zhang D., Yan X., Shi H., Xian X. Effects of Polyunsaturated Fatty Acids on Coronary Atherosclerosis and Inflammation: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med., 2022; 9: 904250. doi: 10.3389/fcvm.2022.904250

63. Amano T., Matsubara T., Uetani T., Kato M., Kato B., Yoshida T., Harada K., Kumagai S., Kunimura A., Shinbo Y., Kitagawa K., Ishii H., Murohara T. Impact of omega-3 polyunsaturated fatty acids on coronary plaque instability: an integrated backscatter intravascular ultrasound study. Atherosclerosis, 2011; 218 (1): 110–116. doi: 10.1016/j.atherosclerosis.2011.05.030

64. Pertiwi K., Küpers L.K., de Goede J., Zock P.L., Kromhout D., Geleijnse J.M. Dietary and Circulating Long-Chain Omega-3 Polyunsaturated Fatty Acids and Mortality Risk After Myocardial Infarction: A Long-Term Follow-Up of the Alpha Omega Cohort. J. Am. Heart Assoc., 2021; 10 (23): e022617. doi: 10.1161/JAHA.121.022617

65. Mariamenatu A.H., Abdu E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids., 2021; 2021: 8848161. doi: 10.1155/2021/8848161.

66. Poreba M., Rostoff P., Siniarski A., Mostowik M., Golebiowska-Wiatrak R., Nessler J., Undas A., Gajos G. Relationship between polyunsaturated fatty acid composition in serum phospholipids, systemic lowgrade inflammation, and glycemic control in patients with type 2 diabetes and atherosclerotic cardiovascular disease. Cardiovasc. Diabetol., 2018; 17 (1): 29. doi: 10.1186/s12933-018-0672-5

67. Piper K., Garelnabi M. Eicosanoids: Atherosclerosis and cardiometabolic health. J. Clin. Transl. Endocrinol., 2020; 19: 100216. doi: 10.1016/j.jcte.2020.100216

68. Khandelwal S., Kelly L., Malik R., Prabhakaran D., Reddy S. Impact of omega-6 fatty acids on cardiovascular outcomes: A review. J. Preventive Cardiol., 2013; 2 (3): 325–336. PMID: 24955333; PMCID: PMC4062196.


Review

For citations:


Kruchinina M.V., Belkovets A.V., Parulikova M.V., Gromov A.A. Atherogenic features of the fatty acid profile of erythrocyte membranes of patients with fatty liver disease of mixed genesis. Ateroscleroz. 2023;19(4):350-368. (In Russ.) https://doi.org/10.52727/2078-256X-2023-19-4-350-368

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-256X (Print)
ISSN 2949-3633 (Online)