Genetics of longevity: telomere length of leukocytes as a marker of aging and a risk factor for age-related diseases in humans
Abstract
The manuscript is devoted to review in the area of genetics of longevity (current state of knowledge), in particular, the use of leukocyte telomere length measurement as a marker of aging and as an indicator of the risk for age-related diseases in humans. The paper also gives an overview of laboratory methods to assess telomere length. In the frame of pilot study of the project on biomarkers of «biological age» in Russian population (grant RCSF) the method for analysis of telomeres length by real-time PCR on the base of technique by Cawthon (2002) was tested. The results of testing provided required accuracy, reproducibility of method’s was of 95,5 %, the tried and tested technique will be used for analysis in present project.
About the Authors
V. N. MaksimovRussian Federation
SB RAMS
Research Institute of Internal and Preventive Medicine
630089
Boris Bogatkov str., 175/1
Novosibirsk
E. N. Voropaeva
Russian Federation
SB RAMS
Research Institute of Internal and Preventive Medicine
630089
Boris Bogatkov str., 175/1
Novosibirsk
M. Bobak
United Kingdom
1–19 Torrington Place
London
S. K. Malyitina
Russian Federation
SB RAMS
Research Institute of Internal and Preventive Medicine
630089
Boris Bogatkov str., 175/1
Novosibirsk
M. I. Voevoda
Russian Federation
SB RAMS
Research Institute of Internal and Preventive Medicine
630089
Boris Bogatkov str., 175/1
Novosibirsk
References
1. Newman A. B., Murabito J. M. The Epidemiology of Longevity and Exceptional Survival // Epidem. Rev. 2013. Jan 31.
2. Sebastiani P., Riva A., Montano M. et al. Whole genome sequences of a male and female supercentenarian, ages greater than 114 years // Front Genet. 2012. Jan. Vol. 3, N 2. P. 90.
3. http://genomics.senescence.info/longevity/
4. Di Bona D., Accardi G., Virruso C. et al. Association Between Genetic Variations in the Insulin / Insulin-Like Growth Factor (Igf-1) Signaling Pathway and Longevity: a Systematic Review and Meta-Analysis // Curr. Vasc. Pharmacol. 2013. Dec. 18.
5. Bao J. M., Song X. L., Hong Y. Q. et al. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis // Asian. J. Androl. 2014. May-Jun. Vol. 16, N 3. P. 446–452.
6. Deelen J., Beekman M., Uh H. W. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age // Hum. Mol. Genet. 2014. Apr. 15.
7. Han J., Ryu S., Moskowitz D. M. et al. Discovery of novel non-synonymous SNP variants in 988 candidate genes from 6 centenarians by target capture and nextgeneration sequencing // Mech Ageing Dev. 2013. Oct. Vol. 134, N 10. P. 478–485.
8. Von Zglinicki T., Martin-Ruiz C. M. Telomeres as biomarkers for ageing and age-related diseases // Curr. Mol. Med. 2005. Vol. 5. P. 197–203.
9. Calado R., Young N. Telomeres in disease. F1000 // Med. Rep. 2012. Vol. 4. P. 8.
10. Fitzpatrick A. L., Kronmal R. A., Gardner J. P. et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study // Am. J. Epidemiol. 2007. Vol. 165. P. 14–21.
11. Benetos A., Kark J. D., Susser E. et al. Tracking and fixed ranking of leukocyte telomere length across the adult life course // Aging. Cell. 2013. Aug. Vol. 12, N 4. P. 615–621.
12. Nordfjall K., Eliasson M., Stegmayr B., Lundin S., Roos G., Nilsson P. M. Increased abdominal obesity, adverse psychosocial factors and shorter telomere ength in subjects reporting early ageing; the MONICA Northern Sweden Study // Scand. J. Public Health. 2008. Vol. 36. P. 744–752.
13. Cawthon R. M., Smith K. R., O’Brien E., Sivatchenko A., Kerber R. A. Association between telomere length in blood and mortality in people aged 60 years or older // Lancet. 2003. Vol. 361. P. 393–395.
14. Kimura M., Hjelmborg J. V., Gardner J. P. et al. Telomere length and mortality: a study of leukocytes in elderly Danish twins // Am. J. Epidemiol. 2008. Vol. 167. P. 799–806.
15. Bischoff C., Petersen H. C., Graakjaer J. et al. No association between telomere length and survival among the elderly and oldest old // Epidemiology. 2006. Vol. 17. P. 190–194.
16. Harris S. E., Deary I. J., MacIntyre A. et al. The association between telomere length, physical health, cognitive ageing, and mortality in nondemented older people // Neurosci. Lett. 2006. Vol. 406. P. 260–264.
17. Martin-Ruiz C. M., Gussekloo J., van Heemst D. et al. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study // Aging Cell. 2005. Vol. 4. P. 287–290.
18. Roux A. V. D., Ranjit N., Jenny N. S. et al. Race / ethnicity and telomere length in the Multi-Ethnic Study of Atherosclerosis // Ibid. 2009. June. Vol. 8, N 3, P. 251–257.
19. Hunt S. C., Chen W., Gardner J. P., Kimura M., Srinivasan S. R., Eckfeldt J. H. et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study // Ibid. 2008. Vol. 7. P. 451–458.
20. Gardner M., Bann D., Wiley L., Cooper R., Hardy R. et al. Gender and telomere length: systematic review and meta-analysis // Exp. Gerontol. 2014. Mar. Vol. 51. P. 15–27.
21. Aviv A., Valdes A. M., Spector T. D. Human telomere biology: pitfalls of moving from the laboratory to epidemiology // Int. J. Epidemiol. 2006. Vol. 35. P. 1424–1429.
22. Barrett E. L., Richardson D. S. Sex differences in telomeres and lifespan // Aging Cell. 2011. Vol. 10. P. 913–921.
23. Deelen J., Beekman M., Codd V. et al. Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers // Int. J. Epidemiol. 2014. Jan. Vol. 14.
24. Bendix L., Thinggaard M., Fenger M. et al. Longitudinal changes in leukocyte telomere length and mortality in humans // J. Gerontol. A. Biol. Sci. Med. Sci. 2014. Feb; Vol. 69, N 2. P. 231–239. doi: 10.1093/gerona/glt153. Epub 2013 Oct 22.
25. Lee J. H., Cheng R., Honig L. S. et al. Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study // Front Genet. 2014. Jan. Vol. 17.
26. Cawthon R. M. Telomere measurement by quantitative PCR // Nucleic Acids Research. 2002. Vol. 30. P. e47.
27. Zubakov D., Liu F., van Zelm M. C. et al. Estimation human age from T-cell DNA rearrangements // Curr. Biol. 2010. Vol. 20. P. R970-R971.
28. O’Callaghan N. J., Fenech M. A quantitative PCR method for measuring absolute telomere length // Biol. Proc. Online. 2011. Vol. 13. P. 3.
29. Baerlocher G. M., Vulto I., De Jong G. Lansdorp P. M. Flow cytometry and FISH to measure the average length of telomeres (flow FISH) // Nature Protocols. 2006. Vol. 1. P. 2365–2376.
30. Hills M., Lücke K., Chavez E. A., Eaves C. J., Lansdorp P. M. Probing the mitotic history and developmental stage of hematopoietic cells using single telomere length analysis (STELA) // Blood. 2009. Vol. 113. P. 5765–5775.
Review
For citations:
Maksimov V.N., Voropaeva E.N., Bobak M., Malyitina S.K., Voevoda M.I. Genetics of longevity: telomere length of leukocytes as a marker of aging and a risk factor for age-related diseases in humans. Ateroscleroz. 2014;10(4):5-9. (In Russ.)